Matrix fraction descriptions in convolutional coding

In this paper, polynomial matrix fraction descriptions (MFDs) are used as a tool for investigating the structure of a (linear) convolutional code and the family of its encoders and syndrome formers. As static feedback and precompensation allow to obtain all minimal encoders (in particular, polynomial encoders and decoupled encoders) of a given code, a simple parametrization of their MFDs is provided. All minimal syndrome formers, by a duality argument, are obtained by resorting to output injection and postcompensation. Decoupled encoders are finally discussed as well as the possibility of representing a convolutional code as a direct sum of smaller ones.

[1]  Jan C. Willems,et al.  Models for Dynamics , 1989 .

[2]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[3]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[4]  Joachim Rosenthal,et al.  Codes, systems, and graphical models , 2001 .

[5]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[6]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[7]  Rolf Johannesson,et al.  Minimal and canonical rational generator matrices for convolutional codes , 1996, IEEE Trans. Inf. Theory.

[8]  F. R. Gantmakher The Theory of Matrices , 1984 .

[9]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[10]  Joachim Rosenthal,et al.  Realization by inspection , 1997, IEEE Trans. Autom. Control..

[11]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[12]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[13]  J. Massey,et al.  Codes, automata, and continuous systems: Explicit interconnections , 1967, IEEE Transactions on Automatic Control.

[14]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[15]  N. Karcanias Geometric properties, invariants, and the Toeplitz structure of minimal bases of rational vector spaces , 1996 .

[16]  Thomas Kailath,et al.  Linear Systems , 1980 .

[17]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[18]  Bruce Kitchens Multidimensional Convolutional Codes , 2002, SIAM J. Discret. Math..

[19]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[20]  R. Tennant Algebra , 1941, Nature.

[21]  Joachim Rosenthal,et al.  Connections between linear systems and convolutional codes , 2000, math/0005281.

[22]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[23]  G. D. Forney,et al.  Algebraic Structure of Convolutional Codes, and Algebraic System Theory , 1991 .

[24]  Toby Berger,et al.  Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.

[25]  G. David Forney,et al.  Structural analysis of convolutional codes via dual codes , 1973, IEEE Trans. Inf. Theory.

[26]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[27]  Ettore Fornasini,et al.  Algebraic aspects of two-dimensional convolutional codes , 1994, IEEE Trans. Inf. Theory.

[28]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[29]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .