Random recursive construction of self-similar fractal measures. The noncompact case

SummaryThe self-similarity of sets (measures) is often defined in a constructive way. In the present paper it will be shown that the random recursive construction model of Falconer, Graf and Mauldin/Williams for (statistically) self-similar sets may be generalized to the noncompact case. We define a sequence of random finite measures, which converges almost surely to a self-similar random limit measure. Under certain conditions on the generating Lipschitz maps we determine the carrying dimension of the limit measure.