Eigenvector Algorithms Incorporated With Reference Systems for Solving Blind Deconvolution of MIMO-IIR Linear Systems

This letter presents an eigenvector algorithm (EVA) for blind deconvolution (BD) of multiple-input multiple-output infinite impulse response (MIMO-IIR) channels (convolutive mixtures), using the idea of reference signals. Differently from the conventional researches on EVAs, the proposed EVA utilizes only one reference signal for recovering all the source signals simultaneously. Computer simulations are presented for demonstrating the effectiveness of the proposed algorithm.

[1]  Mitsuru Kawamoto,et al.  Super-exponential Methods Incorporated with Higher-Order Correlations for Deflationary Blind Equalization of MIMO Linear Systems , 2004, ICA.

[2]  Y. Inouye Autoregressive model fitting for multichannel time series of degenerate rank: Limit properties , 1985 .

[3]  J. Chern,et al.  Eigenvalue problem approach to the blind source separation: Optimization with a reference signal , 1998 .

[4]  Tetsuya Okamoto,et al.  Adaptive super-exponential algorithms for blind deconvolution of MIMO systems , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[5]  Mitsuru Kawamoto,et al.  Eigenvector Algorithms Using Reference Signals , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[6]  Lucas C. Parra,et al.  Blind Source Separation via Generalized Eigenvalue Decomposition , 2003, J. Mach. Learn. Res..

[7]  Mitsuru Kawamoto,et al.  Eigenvector Algorithms for Blind Deconvolution of MIMO-IIR Systems , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[8]  Karl-Dirk Kammeyer,et al.  A closed-form solution to blind equalization , 1994, Signal Process..

[9]  Jean-Christophe Pesquet,et al.  Quadratic Higher Order Criteria for Iterative Blind Separation of a MIMO Convolutive Mixture of Sources , 2007, IEEE Transactions on Signal Processing.

[10]  Driss Aboutajdine,et al.  Source separation contrasts using a reference signal , 2004, IEEE Signal Processing Letters.

[11]  Mitsuru Kawamoto,et al.  Robust Super-Exponential Methods for Blind Equalization of MIMO-IIR Systems , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[12]  José I. Acha,et al.  Eigendecomposition of self-tuned cumulant-matrices for blind source separation , 2004, Signal Process..

[13]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..