Non-Hermitian Euclidean random matrix theory.

We develop a theory for the eigenvalue density of arbitrary non-Hermitian Euclidean matrices. Closed equations for the resolvent and the eigenvector correlator are derived. The theory is applied to the random Green's matrix relevant to wave propagation in an ensemble of pointlike scattering centers. This opens a new perspective in the study of wave diffusion, Anderson localization, and random lasing.

[1]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[2]  V. Ernst Coherent emission of a photon by many atoms , 1969 .

[3]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[4]  O. Bohigas,et al.  Spectral properties of distance matrices , 2003, nlin/0301044.

[5]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[6]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[7]  C. Chamon,et al.  Density of states for dirty d-wave superconductors: A unified and dual approach for different types of disorder , 2000, cond-mat/0008241.

[8]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[9]  Critical statistics for non-Hermitian matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[11]  A. Zee,et al.  Spectra of euclidean random matrices , 1999 .

[12]  R. Carminati,et al.  Threshold of a random laser with cold atoms. , 2008, Physical review letters.

[13]  S. Ciliberti,et al.  Anderson localization in Euclidean random matrices , 2005 .

[14]  Marlan O. Scully,et al.  Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators , 2010 .

[15]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[16]  A. Amir,et al.  Localization, anomalous diffusion, and slow relaxations: a random distance matrix approach. , 2010, Physical review letters.

[17]  B. Mehlig,et al.  EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998 .

[18]  B. Mehlig,et al.  Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles , 2000 .

[19]  Maciej A. Nowak,et al.  Non-Hermitian random matrix models: Free random variable approach , 1997 .

[20]  D. V. Savin,et al.  Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption , 2005, cond-mat/0507016.

[21]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[22]  T. Wellens,et al.  Speckle instability: coherent effects in nonlinear disordered media. , 2008, Physical review letters.

[23]  S. Skipetrov,et al.  Eigenvalue distributions of large Euclidean random matrices for waves in random media , 2010, 1007.1379.

[24]  G. Parisi,et al.  On the high-density expansion for Euclidean random matrices , 2010, 1011.2798.

[25]  F. A. Pinheiro,et al.  Probing Anderson localization of light via decay rate statistics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Y. Castin,et al.  Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers , 2010, 1006.4429.

[27]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[28]  Three-dimensional strong localization of matter waves by scattering from atoms in a lattice with a confinement-induced resonance , 2006, cond-mat/0604232.

[29]  Correlations of eigenvectors for non-Hermitian random-matrix models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  H. Sommers,et al.  Statistics of complex levels of random matrices for decaying systems , 1992 .

[32]  Non-Hermitian random matrix theory: summation of planar diagrams, the ‘single-ring’ theorem and the disc–annulus phase transition , 2006, cond-mat/0603622.

[33]  E. Akkermans,et al.  Photon localization and Dicke superradiance in atomic gases. , 2008, Physical review letters.

[34]  J. Mostowski,et al.  Random Green matrices: From proximity resonances to Anderson localization , 2000 .

[35]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[36]  Maciej A. Nowak,et al.  Random Hermitian versus random non-Hermitian operators—unexpected links , 2006 .

[37]  Yan V Fyodorov,et al.  Random matrices close to Hermitian or unitary: overview of methods and results , 2003 .

[38]  F. A. Pinheiro,et al.  Lasing threshold of diffusive random lasers in three dimensions (4 pages) , 2006 .

[39]  C. Ganter,et al.  Euclidean random matrix theory: low-frequency non-analyticities and Rayleigh scattering , 2010, 1003.2514.

[40]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[41]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[42]  G. Parisi,et al.  Phonon interpretation of the ‘boson peak’ in supercooled liquids , 2003, Nature.

[43]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[44]  Maciej A. Nowak,et al.  Non-hermitian random matrix models , 1996, cond-mat/9612240.