Gaussian limits for discrepancies I. Asymptotic results
暂无分享,去创建一个
[1] Hannes Leeb,et al. Weak limits for the diaphony , 1998 .
[2] Jiri Hoogland,et al. Discrepancy - based error estimates for quasi - Monte Carlo , 1996 .
[3] F. James,et al. Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.
[4] Jiri Hoogland,et al. Discrepancy-based error estimates for Quasi-Monte Carlo. I. General formalism , 1996 .
[5] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[6] R. Kleiss,et al. Discrepancy-based error estimates for Quasi-Monte Carlo. 2: Applications in one dimension , 1996, hep-ph/9603211.
[7] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[8] H. Wozniakowski. Average case complexity of multivariate integration , 1991 .
[9] Michel Loève,et al. Probability Theory I , 1977 .
[10] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[11] S. Tezuka,et al. Toward real-time pricing of complex financial derivatives , 1996 .
[12] R. Kleiss. Average-case complexity distributions: a generalization of the Woz̀niakowski lemma for multidimensional numerical integration , 1992 .
[13] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[14] Shu Tezuka,et al. Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.
[15] R. Kleiss,et al. Gaussian limits for discrepancies , 1998 .
[16] C. Schlier,et al. Monte Carlo integration with quasi-random numbers: experience with discontinuous integrands , 1997 .
[17] Spassimir H. Paskov,et al. Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..