Monolithic integration of 1.55 micron photodetectors with GaAs electronics for high speed optical communications

Integrated optoelectronics has shown exciting promise for high speed optical communication systems. For better system performance and lower cost, monolithic optoelectronic integrated circuits (OEICs) are highly desirable. A novel optoelectronic integration technology for high performance OEICs was proposed and partially developed and termed Aligned Pillar Bonding (APB) process. The work began with applying GaAs-based Epitaxy-on-Electronics (EoE) technology to integrate matched pairs of 1.55 micron InGaAs photodetectors with high speed GaAs electronics, which requires the direct growth of InGaAs on lattice-mismatched GaAs substrates using molecular beam epitaxy (MBE). A customized OEIC chip was designed and fabricated. Lattice-mismatched MBE growth was studied and InGaAs photodetectors on GaAs were produced using the relaxed buffer growth. However, the device performance and uniformity deteriorated significantly from those on lattice-matched InP substrates, and thus unsuitable for high speed OEICs. Aligned pillar bonding (APB) process was hence proposed. APB integrates lattice mismatched materials using aligned, selective area wafer bonding at reduced temperature. The photonic device structures are grown on their lattice matched substrates under optimal growth condition. These structures are patterned into pillars, aligned and bonded into the designated wells on the electronic chips. Subsequent substrate removal and device fabrication results in high density OEICs. 1.55 micron InGaAs photodetectors on GaAs were demonstrated using reduced temperature Pd-assisted wafer bonding, resulting in superior device performance. While the conventional dry etching techniques are impractical to pattern the desired deep pillars, electron cyclotron resonance (ECR) enhanced reactive ion etching (RIE) of InP using chlorine/helium chemistry has been developed, resulting in fast, deep, smooth, and highly anisotropic etching at room temperature. The etching characteristics have been calibrated for both InP and GaAs. Fast etching of InGaP, InA1As, AlAs, and GaP has also been demonstrated. The etched pillars were subsequently bonded onto a OEIC chip, and initial study of small area pillar to well bonding was performed. APB allows independent optimization of both photonics and electronics for OEIC integration, inherits the wealth of the existing electronics industry, maintains good planarization and high density, permits low parasitics and high performance, and is naturally compatible with large scale manufacturing. Thesis Supervisor: Clifton G. Fonstad Title: Professor of Electrical Engineering Thesis Supervisor: Eugene A. Fitzgerald Title: Associate Professor of Electronic Materials

[1]  D.C.W. Lo,et al.  A monolithically integrated In/sub 0.53/Ga/sub 0.47/As optical receiver with voltage-tunable transimpedance , 1991, IEEE Photonics Technology Letters.

[2]  P.R. Berger,et al.  1.0 GHz monolithic p-i-n MODFET photoreceiver using molecular beam epitaxial regrowth , 1992, IEEE Photonics Technology Letters.

[3]  Rajeev J Ram,et al.  Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .

[4]  J. J. Dudley,et al.  Optically pumped all-epitaxial wafer-fused 1.52 µm vertical-cavity lasers , 1994 .

[5]  Eugene A. Fitzgerald,et al.  Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area , 1989 .

[6]  B. W. Hakki,et al.  Degradation of CW GaAs double-heterojunction lasers at 300 K , 1973 .

[7]  M. Yamaguchi,et al.  Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates , 1990 .

[8]  Naoaki Yamanaka,et al.  A 1.8 Gb/s GaAs optoelectronic universal switch LSI with monolithically integrated photodetector and laser driver , 1992 .

[9]  E. Fitzgerald,et al.  Relaxed InxGa1−xAs graded buffers grown with organometallic vapor phase epitaxy on GaAs , 1998 .

[10]  M. Littlejohn,et al.  Intrinsic and extrinsic response of GaAs metal-semiconductor-metal photodetectors , 1990, IEEE Photonics Technology Letters.

[11]  C. P. Kuo,et al.  Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes , 1994 .

[12]  Rajaram Bhat,et al.  Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement , 1993 .

[13]  J. Bowers,et al.  Isotype heterojunctions with flat valence or conduction band , 1997 .

[14]  D. Cassidy,et al.  Photochemical etching of n-InP: observations on photon efficiency and saturation , 1993 .

[15]  Yoh Ogawa,et al.  Electrical characteristics of directly-bonded GaAs and InP , 1993 .

[16]  Y. Akatsu,et al.  11 GHz ultrawide-bandwidth monolithic photoreceiver using InGaAs pin PD and InAlAs/InGaAs HEMTs , 1994 .

[17]  D. Wake,et al.  Monolithically integrated InGaAs/InP PIN-JFET photoreceiver , 1986 .

[18]  J. Merz,et al.  Dry etch induced damage in GaAs investigated using Raman scattering spectroscopy , 1989 .

[19]  T. Okoshi,et al.  Simple formula for bit-error rate in optical heterodyne DPSK systems employing polarisation diversity , 1988 .

[20]  R. B. Nubling,et al.  Ultra-High-Speed Pin/hbt Monolithic Oeic Photoreceiver , 1991, [1991] 49th Annual Device Research Conference Digest.

[21]  Y. Akatsu,et al.  A 10 Gb/s high sensitivity, monolithically integrated p-i-n-HEMT optical receiver , 1993, IEEE Photonics Technology Letters.

[22]  D. Psaltis,et al.  Integration of LED's and GaAs circuits by MBE regrowth , 1994, IEEE Photonics Technology Letters.

[23]  S. Sugou,et al.  High-quality InGaAs/InP multiquantum-well structures on Si fabricated by direct bonding , 1994 .

[24]  F. Ren,et al.  Microwave CI2/H2 discharges for high rate etching of InP , 1992 .

[25]  Joe C. Campbell,et al.  InGaAs PIN photodiodes grown on GaAs substrates by metal organic vapour phase epitaxy , 1987 .

[26]  S. Chandrasekhar,et al.  A monolithic 5 Gb/s p-i-n/HBT integrated photoreceiver circuit realized from chemical beam epitaxial material , 1991, IEEE Photonics Technology Letters.

[27]  Yirong Lin,et al.  Low dark current, planar In0.4Ga0.6As p‐i‐n photodiode prepared by molecular beam epitaxy growth on GaAs , 1991 .

[28]  Kenya Nakai,et al.  Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate , 1986 .

[29]  Eugene A. Fitzgerald,et al.  Dislocations in strained-layer epitaxy : theory, experiment, and applications , 1991 .

[30]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[31]  Sethumadhavan Chandrasekhar,et al.  An OEIC Photoreceiver Using InP/InGaAs Heterojunction Bipolar Transistors at 10 Gb/s , 1992 .

[32]  A. Yi-Yan,et al.  Grafted semiconductor optoelectronics , 1991 .

[33]  S. A. Rosser,et al.  Monolithically integrated long wavelength optical receiver OEICs using InAlAs/InGaAs heterojunction MESFETs (HFETs) , 1992 .

[34]  F. A. Kish,et al.  Wafer bonding of 50‐mm diameter GaP to AlGaInP‐GaP light‐emitting diode wafers , 1996 .

[35]  Hirofumi Namizaki,et al.  Dark current and diffusion length in InGaAs photodiodes grown on GaAs substrates , 1990 .

[36]  Eugene A. Fitzgerald,et al.  Structure and recombination in InGaAs/GaAs heterostructures , 1988 .

[37]  K. V. Shenoy,et al.  Elevated temperature stability of GaAs digital integrated circuits , 1996, IEEE Electron Device Letters.

[38]  S. Ray,et al.  High-Performance Monolithically Integrated In,,,Ga0~,,As/InP p-i-n/JFET Optical Receiver Front-End with Adaptive Feedback Control , 1992 .

[39]  D. Psaltis,et al.  Monolithic optoelectronic circuit design and fabrication by epitaxial growth on commercial VLSI GaAs MESFET's , 1995, IEEE Photonics Technology Letters.

[40]  E. A. Fitzgerald,et al.  The effect of substrate growth area on misfit and threading dislocation densities in mismatched heterostructures , 1989 .

[41]  William D. Goodhue,et al.  Practical OEICs based on the monolithic integration of GaAs-InGaP LEDs with commercial GaAs VLSI electronics , 1998 .

[42]  T. Muoi Receiver design for high-speed optical-fiber systems , 1984 .

[43]  S. Chandrasekhar,et al.  A 10 Gbit/s OEIC photoreceiver using InP/InGaAs heterojunction bipolar transistors , 1992 .

[44]  Leonid G. Kazovsky,et al.  Phase- and polarization-diversity coherent optical techniques , 1989 .

[45]  T. Ishibashi,et al.  High-Speed Response of Uni-Traveling-Carrier Photodiodes , 1997 .

[46]  K. Oh,et al.  An InGaAs/InP p-i-n-JFET OEIC with a wing-shaped p/sup +/-InP layer , 1992, IEEE Photonics Technology Letters.

[47]  N. Olsson,et al.  Monolithically integrated InGaAs-P-I-N InP-MISFET PINFET grown by chloride vapor phase epitaxy , 1989, IEEE Photonics Technology Letters.

[48]  Kenya Nakai,et al.  Monolithic integration of a pin photodiode and a field‐effect transistor using a new fabrication technique—graded step process , 1985 .

[49]  Y. Akatsu,et al.  10-Gb/s high-speed monolithically integrated photoreceiver using InGaAs p-i-n PD and planar doped InAlAs/InGaAs HEMTs , 1992, IEEE Photonics Technology Letters.

[50]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[51]  M. Zirngibl,et al.  High‐speed photodetectors on InGaAs/GaAs‐on‐GaAs superlattices , 1991 .

[52]  N. Uchida,et al.  A 622 Mb/s high-sensitivity monolithic InGaAs-InP pin-FET receiver OEIC employing a cascode preamplifier , 1991, IEEE Photonics Technology Letters.

[53]  K. Kurishima,et al.  Electron Velocity Overshoot Effect in Collector Depletion Layers of InP/InGaAs Heterojunction Bipolar Transistors , 1992 .

[54]  N. Uchida,et al.  A 622 Mb/s monolithically integrated InGaAs-InP high-sensitivity transimpedance photoreceiver and a multichannel receiver array , 1991, IEEE Photonics Technology Letters.

[55]  Krishna V. Shenoy Monolithic optoelectronic VLSI circuit design and fabrication for optical interconnects , 1995 .

[56]  P. Petroff,et al.  Defect structure introduced during operation of heterojunction GaAs lasers , 1973 .

[57]  R. Hartman,et al.  Effects of Ga(As,Sb) active layers and substrate dislocation density on the reliability of 0.87‐μm (Al,Ga)As lasers , 1982 .

[58]  S. J. Pearton,et al.  Etching of InP at ≳1 μm/min in Cl2/Ar plasma chemistries , 1996 .

[59]  S. Denbaars,et al.  Low-temperature Pd bonding of III-V semiconductors , 1995 .

[60]  M. Lieberman,et al.  Plasma Generation for Materials Processing , 1996 .

[61]  S. Chandrasekhar,et al.  High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure , 1993, IEEE Photonics Technology Letters.

[62]  S. Chandrasekhar,et al.  20-Gb/s monolithic p-i-n/HBT photoreceiver module for 1.55-μm applications , 1995, IEEE Photonics Technology Letters.

[63]  Hermann Schumacher,et al.  Transit-time limited frequency response of InGaAs MSM photodetectors , 1990 .

[64]  Stephen R. Forrest Monolithic optoelectronic integration: A new component technology for lightwave communications , 1985 .

[65]  J. Rosenzweig,et al.  Picosecond pulse response characteristics of GaAs metal‐semiconductor‐metal photodetectors , 1991 .

[66]  Yakov Royter Monolithic integration of etched facet lasers with GaAs VLSI cirucits , 1998 .

[67]  A. Christou,et al.  Lattice mismatched InGaAs on silicon photodetectors grown by molecular beam epitaxy , 1993 .

[68]  D.J. DiGiovanni,et al.  A one-watt, 10-Gbps high-sensitivity optical communication system , 1995, IEEE Photonics Technology Letters.

[69]  M. Yamaguchi,et al.  Film thickness dependence of dislocation density reduction in GaAs‐on‐Si substrates , 1990 .

[70]  K. C. Hwang,et al.  Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs , 1993, IEEE Photonics Technology Letters.

[71]  Mark R. Pinto,et al.  Elimination of heterojunction band discontinuities by modulation doping , 1992 .

[72]  D. Kossives,et al.  GaAs MQW modulators integrated with silicon CMOS , 1995, IEEE Photonics Technology Letters.

[73]  F. Ren,et al.  Smooth, low‐bias plasma etching of InP in microwave Cl2/CH4/H2 mixtures , 1992 .

[74]  High-speed InGaAs on Si metal-semiconductor-metal photodetectors , 1994 .

[75]  Gd Giok-Djan Khoe,et al.  Integrated-optic versus microoptic devices for fiber-optic telecommunication systems: a comparison , 1996 .

[76]  S. P. Beamont,et al.  Reactive ion etching of GaAs using a mixture of methane and hydrogen , 1987 .

[77]  W.-P. Hong,et al.  Monolithically integrated waveguide-MSM detector-HEMT amplifier receiver for long-waveguide lightwave systems , 1991, IEEE Photonics Technology Letters.

[78]  Osamu Wada ADVANCES IN OPTOELECTRONIC INTEGRATION , 1990 .

[79]  John E. Bowers,et al.  GaAs to InP wafer fusion , 1995 .

[80]  R. A. Moore,et al.  Properties of alternately charged coplanar parallel strips by conformal mappings , 1968 .

[81]  J. Soole,et al.  InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications , 1991 .

[82]  V. Chan,et al.  Local-oscillator excess-noise suppression for homodyne and heterodyne detection. , 1983, Optics letters.

[83]  M. Sasaki,et al.  OEIC technology and its application to subscriber loops , 1989 .

[84]  W. Kosonocky,et al.  A monolithically integrated InGaAs-InP p-i-n/JFET focal plane array , 1996, IEEE Photonics Technology Letters.

[85]  M. A. Koza,et al.  Bonding by atomic rearrangement of InP/InGaAsP 1.5 μm wavelength lasers on GaAs substrates , 1991 .

[86]  J. Harris,et al.  The use of graded InGaAs layers and patterned substrates to remove threading dislocations from GaAs on Si , 1994 .

[87]  R. M. Kolbas,et al.  Planar monolithic integration of a photodiode and a GaAs preamplifier , 1983 .

[88]  Hideki Hayashi,et al.  Low-noise current optoelectronic integrated receiver with internal equalizer for gigabit-per-second long-wavelength optical communications , 1990 .

[89]  Yuan-Kuang Tu,et al.  Long wavelength (1.3 μm) vertical-cavity surface-emitting lasers with a wafer-bonded mirror and an oxygen-implanted confinement region , 1997 .

[90]  Eli Yablonovitch,et al.  Van der Waals bonding of GaAs on Pd leads to a permanent, solid‐phase‐topotaxial, metallurgical bond , 1991 .

[91]  G. Lucovsky,et al.  Transit-time considerations in p-i-n diodes. , 1964 .

[92]  R. Johnson,et al.  Design of flat-band AlGaAs heterojunction Bragg reflectors , 1996 .

[93]  T. Ishibashi,et al.  InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz , 1998, IEEE Photonics Technology Letters.

[94]  M. Zirngibl,et al.  High speed 1.3 mu m InGaAs/GaAs superlattice on Si photodetector , 1990 .

[95]  M. Zirngibl,et al.  A superlattice GaAs/InGaAs-on-GaAs photodetector for 1.3- mu m applications , 1989, IEEE Electron Device Letters.

[96]  D. Psaltis,et al.  Monolithic integration of SEEDs and VLSI GaAs circuits by epitaxy on electronics , 1997, IEEE Photonics Technology Letters.

[97]  E.A. Swanson,et al.  High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization , 1994, IEEE Photonics Technology Letters.

[98]  Won-Tien Tsang,et al.  Monolithically integrated InGaAs/InP MSM-FET photoreceiver prepared by chemical beam epitaxy , 1990, IEEE Photonics Technology Letters.

[99]  N. A. Olsson,et al.  Monolithic InGaAs p‐i‐n InP metal‐insulator‐semiconductor field‐effect transistor receiver for long‐wavelength optical communications , 1990 .