Pesin's dimension for Poincare recurrences.
暂无分享,去创建一个
[1] Mogens H. Jensen,et al. Global universality at the onset of chaos: Results of a forced Rayleigh-Benard experiment. , 1985 .
[2] Y. Pesin,et al. Dimension type characteristics for invariant sets of dynamical systems , 1988 .
[3] J. Gillis,et al. Probability and Related Topics in Physical Sciences , 1960 .
[4] W. D. Melo,et al. ONE-DIMENSIONAL DYNAMICS , 2013 .
[5] M. Boshernitzan,et al. Quantitative recurrence results , 1993 .
[6] Invariant measures of interval maps , 1994 .
[7] G. Zaslavsky,et al. Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. , 1997, Chaos.
[8] Tippett,et al. Connection between recurrence-time statistics and anomalous transport. , 1991, Physical review letters.
[9] A. Katok,et al. Introduction to the Modern Theory of Dynamical Systems: Low-dimensional phenomena , 1995 .
[10] V. Jarník. Über die simultanen diophantischen Approximationen , 1931 .
[11] S. V. Fomin,et al. Ergodic Theory , 1982 .
[12] H. G. E. Hentschel,et al. The infinite number of generalized dimensions of fractals and strange attractors , 1983 .
[13] P. Walters. Introduction to Ergodic Theory , 1977 .
[14] V. Kanovei. Kolmogorov's ideas in the theory of operations on sets , 1988 .