Compressed Representation of Kohn-Sham Orbitals via Selected Columns of the Density Matrix.

Given a set of Kohn-Sham orbitals from an insulating system, we present a simple, robust, efficient, and highly parallelizable method to construct a set of optionally orthogonal, localized basis functions for the associated subspace. Our method explicitly uses the fact that density matrices associated with insulating systems decay exponentially along the off-diagonal direction in the real space representation. We avoid the usage of an optimization procedure, and the localized basis functions are constructed directly from a set of selected columns of the density matrix (SCDM). Consequently, the core portion of our localization procedure is not dependent on any adjustable parameters. The only adjustable parameters present pertain to the use of the SCDM after their computation (for example, at what value should the SCDM be truncated). Our method can be used in any electronic structure software package with an arbitrary basis set. We demonstrate the numerical accuracy and parallel scalability of the SCDM procedure using orbitals generated by the Quantum ESPRESSO software package. We also demonstrate a procedure for combining the orthogonalized SCDM with Hockney's algorithm to efficiently perform Hartree-Fock exchange energy calculations with near-linear scaling.

[1]  Scott B. Baden,et al.  Parallel implementation of γ‐point pseudopotential plane‐wave DFT with exact exchange , 2011, J. Comput. Chem..

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[4]  François Gygi,et al.  Compact representations of Kohn-Sham invariant subspaces. , 2007, Physical review letters.

[5]  Tiejun Li,et al.  Localized bases of eigensubspaces and operator compression , 2010, Proceedings of the National Academy of Sciences.

[6]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[7]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[8]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[9]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[10]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[11]  S. Osher,et al.  Compressed modes for variational problems in mathematics and physics , 2013, Proceedings of the National Academy of Sciences.

[12]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[13]  J. W. Eastwood,et al.  Remarks on the solution of poisson's equation for isolated systems , 1979 .

[14]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[15]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[17]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[18]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[19]  E. I. Blount Formalisms of Band Theory , 1962 .

[20]  Annabella Selloni,et al.  Order-N implementation of exact exchange in extended insulating systems , 2008, 0812.1322.

[22]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[23]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[24]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[26]  J. D. Cloizeaux,et al.  Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties , 1964 .

[27]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[28]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[29]  J. D. Cloizeaux Analytical Properties of n-Dimensional Energy Bands and Wannier Functions , 1964 .

[30]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[31]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[32]  Roger W. Hockney,et al.  A Fast Direct Solution of Poisson's Equation Using Fourier Analysis , 1965, JACM.

[33]  G. Nenciu Existence of the exponentially localised Wannier functions , 1983 .

[34]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[35]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[36]  James Demmel,et al.  Communication Avoiding Rank Revealing QR Factorization with Column Pivoting , 2015, SIAM J. Matrix Anal. Appl..

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  François Gygi,et al.  Efficient Computation of Hartree-Fock Exchange Using Recursive Subspace Bisection. , 2013, Journal of chemical theory and computation.