Generalized Eigenvalue Decomposition in Time Domain Modal Parameter Identification

This paper is intended to point out the relationship among current time domain modal analysis methods by employing generalized eigenvalue decomposition. Ibrahim time domain (ITD), least-squares complex exponential (LSCE) and eigensystem realization algorithm (ERA) methods are reviewed and chosen to do the comparison. Reformulation to their original forms shows these three methods can all be attributed to a generalized eigenvalue problem with different matrix pairs. With this general format, we can see that single-input multioutput (SIMO) methods can easily be extended to multi-input multioutput (MIMO) cases by taking advantage of a generalized Hankel matrix or a generalized Toeplitz matrix.

[1]  E. C. Mikulcik,et al.  A method for the direct identification of vibration parameters from the free response , 1977 .

[2]  J. Juang,et al.  Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm , 1986 .

[3]  David L. Brown,et al.  Parameter Estimation Techniques for Modal Analysis , 1979 .

[4]  R. B. Spencer,et al.  A TIME DOMAIN MODAL VIBRATION TEST TECHNIQUE Ibrahim, S. R. and Mikulcik, E. C. U. S. Naval Res. Lab., Shock Vib. Bull. 43 (4), 21-37 (July 1973) 23 refs Refer to Abstract No. 73-1618 , 1974 .

[5]  A. R.J,et al.  A UNIFIED MATRIX POLYNOMIAL APPROACH TO MODAL IDENTIFICATION , 1998 .

[6]  A. Benveniste,et al.  Single sample modal identification of a nonstationary stochastic process , 1985, IEEE Transactions on Automatic Control.

[7]  S. R. Ibrahim,et al.  Modal confidence factor in vibration testing , 1978 .

[8]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[9]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[10]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[11]  D. Chelidze,et al.  Blind source separation based vibration mode identification , 2007 .

[12]  Wenliang Zhou,et al.  Smooth orthogonal decomposition-based vibration mode identification , 2006 .

[13]  Guido De Roeck,et al.  REFERENCE-BASED STOCHASTIC SUBSPACE IDENTIFICATION FOR OUTPUT-ONLY MODAL ANALYSIS , 1999 .

[14]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[15]  Richard Russell,et al.  A Multi-Input Modal Estimation Algorithm for Mini-Computers , 1982 .

[16]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .