A Dynamic Mean-Variance Analysis for Log Returns

We propose a dynamic portfolio choice model with the mean-variance criterion for log-returns. The model yields time-consistent portfolio policies and is analytically tractable even under some incomplete market settings. The portfolio policies conform with conventional investment wisdom (e.g. richer people should invest more absolute amount of money in risky assets; the longer investment time horizon, the more proportional amount of money should be invested in risky assets; and for long-term investment, people should not short sell major stock indices whose returns are higher than the risk-free rate), and the model provides a direct link with the CRRA utility maximization in a complete market.

[1]  R. H. Strotz Myopia and Inconsistency in Dynamic Utility Maximization , 1955 .

[2]  B. Peleg,et al.  On the Existence of a Consistent Course of Action when Tastes are Changing , 1973 .

[3]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[4]  Finn E. Kydland,et al.  Time to Build and Aggregate Fluctuations , 1982 .

[5]  R. Mehra,et al.  THE EQUITY PREMIUM A Puzzle , 1985 .

[6]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[7]  N. Mankiw,et al.  The Consumption of Stockholders and Non-Stockholders , 1990 .

[8]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[9]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[10]  David G. Luenberger,et al.  A preference foundation for log mean-variance criteria in portfolio choice problems , 1993 .

[11]  Glenn Ellison,et al.  Risk Taking by Mutual Funds as a Response to Incentives , 1995, Journal of Political Economy.

[12]  K. Brown,et al.  Of Tournaments and Temptations: An Analysis of Managerial Incentives in the Mutual Fund Industry , 1996 .

[13]  Martin J. Gruber,et al.  Another puzzle: the growth in actively managed mutual funds , 1996, Annals of Operations Research.

[14]  Ts Kim,et al.  Dynamic Nonmyopic Portfolio Behavior , 1994 .

[15]  Luis M. Viceira,et al.  Consumption and Portfolio Decisions When Expected Returns are Time Varying , 1996 .

[16]  Isabelle Bajeux-Besnainou,et al.  Dynamic asset allocation in a mean-variance framework , 1998 .

[17]  Peter Tufano,et al.  Costly Search and Mutual Fund Flows , 1998 .

[18]  S. Pliska,et al.  Risk-Sensitive Dynamic Asset Management , 1999 .

[19]  Michael W. Brandt Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach , 1999 .

[20]  Luis M. Viceira,et al.  Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets , 1999 .

[21]  Jun Liu Portfolio Selection in Stochastic Environments , 1999 .

[22]  N. Barberis Investing for the Long Run When Returns are Predictable , 2000 .

[23]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[24]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[25]  Duan Li,et al.  Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation , 2000 .

[26]  Michael W. Brandt,et al.  Variable Selection for Portfolio Choice , 2001 .

[27]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[28]  Jessica A. Wachter Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets , 2001, Journal of Financial and Quantitative Analysis.

[29]  Christian Schlag Strategic Asset Allocation: Portfolio Choice for Long‐Term Investors. , 2003 .

[30]  G. Pagès,et al.  Optimal quantization methods and applications to numerical problems in finance , 2004 .

[31]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[32]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[33]  X. Zhou,et al.  CONTINUOUS‐TIME MEAN‐VARIANCE PORTFOLIO SELECTION WITH BANKRUPTCY PROHIBITION , 2005 .

[34]  Ying Hu,et al.  BSDE with quadratic growth and unbounded terminal value , 2006 .

[35]  I. Ekeland,et al.  Being serious about non-commitment: subgame perfect equilibrium in continuous time , 2006, math/0604264.

[36]  Costis Skiadas,et al.  Dynamic Portfolio Choice and Risk Aversion , 2007 .

[37]  I. Ekeland,et al.  Investment and consumption without commitment , 2007, 0708.0588.

[38]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[39]  Jaksa Cvitanic,et al.  Implications of Sharpe Ratio as a Performance Measure in Multi-Period Settings , 2008 .

[40]  Suleyman Basak,et al.  Dynamic Mean-Variance Asset Allocation , 2009 .

[41]  Suleyman Basak,et al.  Dynamic Hedging in Incomplete Markets: A Simple Solution , 2011 .

[42]  Wang Wei-xing Continuous-time Mean-variance Portfolio Selection , 2010 .

[43]  Dmitry Makarov,et al.  Strategic Asset Allocation in Money Management , 2011 .

[44]  Hong Liu,et al.  Illiquidity, position limits, and optimal investment for mutual funds , 2011, J. Econ. Theory.

[45]  T. Roncalli,et al.  Strategic Asset Allocation , 2011 .

[46]  Alexander Shapiro Time consistency of dynamic risk measures , 2012, Oper. Res. Lett..

[47]  Ke Yu,et al.  Constraints , 2019, Sexual Selection.

[48]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[49]  J. Cochrane,et al.  A Mean-Variance Benchmark for Intertemporal Portfolio Theory , 2013 .

[50]  Mark H. A. Davis,et al.  Risk-Sensitive Investment Management , 2014 .

[51]  Tomas Björk,et al.  A theory of Markovian time-inconsistent stochastic control in discrete time , 2014, Finance Stochastics.

[52]  X. Zhou,et al.  MEAN–VARIANCE PORTFOLIO OPTIMIZATION WITH STATE‐DEPENDENT RISK AVERSION , 2014 .

[53]  Jianqing Fan,et al.  An Overview of the Estimation of Large Covariance and Precision Matrices , 2015, The Econometrics Journal.

[54]  J. Chassagneux,et al.  Numerical simulation of quadratic BSDEs , 2013, 1307.5741.

[55]  Tomas Björk,et al.  On time-inconsistent stochastic control in continuous time , 2016, Finance Stochastics.