A resolution for the enigma of a liquid’s configurational entropy-molecular kinetics relation

The literature data on the entropy and heat capacity of 33 glass-forming liquids have been used to examine the validity of the Adam–Gibbs relation between a liquid’s configurational entropy, Sconf, and its molecular kinetics. The critical entropy, sc*, of kB ln 2 (=0.956×10−23 J molecule−1 K−1) in the equation is less than even the residual entropy per molecule in a glass at 0 K, and this creates difficulties in determining the size of the cooperatively rearranging region, z*, in the liquid. It is argued that, z*=[1−(T0/T)]−1, and the temperature-invariant energy term, Δμ, is equal to RB, which has been determined from the knowledge of the Vogel–Fulcher–Tamman parameters B and T0, with R being the gas constant, and on the basis of the argument that the preexponential term of this equation is identical to that of the Adam–Gibbs relation. As the lattice modes in a glass are lower in frequency and more anharmonic than in its crystal, its vibrational entropy, Svib, would be higher than that of the crystal pha...

[1]  D. Turnbull,et al.  Test of Adam—Gibbs Liquid Viscosity Model with o-Terphenyl Specific-Heat Data , 1967 .

[2]  O. Yamamuro,et al.  Heat capacities and glass transitions of 1-propanol and 3-methylpentane under pressure. New evidence for the entropy theory , 1994 .

[3]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[4]  M. Hanaya,et al.  Discovery of a potentially homogeneous-nucleation-based crystallization around the glass transition temperature in salol , 1995 .

[5]  Ranko Richert,et al.  Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy , 1998 .

[6]  A. B. Bestul,et al.  Excess Entropy at Glass Transformation , 1964 .

[7]  M. Goldstein,et al.  Viscous liquids and the glass transition. 9. Nonconfigurational contributions to the excess entropy of disordered phases , 1980 .

[8]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[9]  S. Todd,et al.  Low-temperature thermal studies on six organo-sulfur compounds , 1974 .

[10]  C. Angell Entropy and Fragility in Supercooling Liquids , 1997, Journal of research of the National Institute of Standards and Technology.

[11]  O. Yamamuro,et al.  Calorimetric study of ethylene glycol and 1,3-propanediol: configurational entropy in supercooled polyalcohols , 1999 .

[12]  D. W. Scott,et al.  2-Butanethiol: Chemical Thermodynamic Properties between 0 and 1000°K.; Rotational Conformations1 , 1958 .

[13]  M. Oguni,et al.  Calorimetric study of l,d-propene carbonate: observation of the β- as well as α-glass transition in the supercooled liquid , 1994 .

[14]  K. Ngai,et al.  Thermodynamic fragility and kinetic fragility in supercooling liquids: A missing link in molecular liquids , 1999 .

[15]  G. P. Johari,et al.  GLASS TRANSITION AND SECONDARY RELAXATIONS IN MOLECULAR LIQUIDS AND CRYSTALS , 1976 .

[16]  G. P. Johari,et al.  Structural Relaxation and Calorimetry in the Glass-Softening Range of 1,3,5-Tris(1-naphthyl)benzene , 1999 .

[17]  M. Sugisaki,et al.  On the Glass Transition Phenomenon of Isopentane , 1968 .

[18]  Martin Goldstein,et al.  Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid , 1976 .

[19]  O. Yamamuro,et al.  Thermodynamic study of 1-butene. Exothermic and endothermic enthalpy relaxations near the glass transition☆ , 1991 .

[20]  D. Plazek,et al.  Viscoelastic behavior of 1,3,5 tri α-naphthyl benzene (will the real TαNB please stand up) , 1999 .

[21]  D. Plazek,et al.  Physical Properties of Aromatic Hydrocarbons. IV. An Analysis of the Temperature Dependence of the Viscosity and the Compliance of 1,3,5 Tri‐α‐naphthylbenzene , 1968 .

[22]  J. F. Messerly,et al.  3-Methylpentane and 3-methylheptane: Low-temperature thermodynamic properties , 1973 .

[23]  M. Mizukami,et al.  Presence of Two Freezing-In Processes Concerning α-Glass Transition in the New Liquid Phase of Triphenyl Phosphite and Its Consistency with “Cluster Structure” and “Intracluster Rearrangement for α Process” Models , 1999 .

[24]  O. Yamamuro,et al.  Calorimetric Study of Glassy and Liquid Toluene and Ethylbenzene: Thermodynamic Approach to Spatial Heterogeneity in Glass-Forming Molecular Liquids† , 1998 .

[25]  M. Oguni,et al.  Construction of an adiabatic calorimeter for a vapor-deposited sample and thermal characterization of amorphous butyronitrile , 1988 .

[26]  KishimotoKoji,et al.  Calorimetric Study of the Glassy State. VIII. Heat Capacity and Relaxational Phenomena of Isopropylbenzene , 1973 .

[27]  A. B. Bestul,et al.  Heat Capacities and Related Thermal Data for Diethyl Phthalate Crystal, Glass, and Liquid to 360 °K. , 1967, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[28]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition: A Potential Energy Barrier Picture , 1969 .

[29]  G. P. Johari Intrinsic mobility of molecular glasses , 1973 .

[30]  I. Hodge,et al.  Nonlinear Kinetic and Thermodynamic Properties of Monomeric Organic Glasses , 1999 .

[31]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[32]  K. Ngai Synergy of entropy and intermolecular coupling in supercooling liquids , 1999 .

[33]  M. Mizukami,et al.  Calorimetric study of 1,3-diphenyl-1,1,3,3-tetramethyldisiloxane: Emergence of α-, β-, and crystalline-glass transitions , 1996 .

[34]  S. Matsuoka Entropy, Free Volume, and Cooperative Relaxation , 1996, Journal of research of the National Institute of Standards and Technology.

[35]  D. R. Douslin,et al.  Low-Temperature Thermal Data on the Five Isomeric Hexanes1 , 1946 .

[36]  M. Goldstein Viscous liquids and the glass transition. VII. Molecular mechanisms for a thermodynamic second order transition , 1977 .

[37]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[38]  C. Jackson,et al.  The glass transition of organic liquids confined to small pores , 1991 .

[39]  G. P. Johari,et al.  Viscous Liquids and the Glass Transition. III. Secondary Relaxations in Aliphatic Alcohols and Other Nonrigid Molecules , 1971 .

[40]  G. P. Johari,et al.  Dielectric properties of glycerol in the range 0.1–105 Hz, 218–357 K, 0–53 kb , 1972 .

[41]  E. Rössler,et al.  The dielectric response of simple organic glass formers , 1999 .

[42]  O. Yamamuro,et al.  CALORIMETRIC STUDY OF 3-BROMOPENTANE : CORRELATION BETWEEN STRUCTURAL RELAXATION TIME AND CONFIGURATIONAL ENTROPY , 1995 .

[43]  G. E. Gibson,et al.  THE THIRD LAW OF THERMODYNAMICS. EVIDENCE FROM THE SPECIFIC HEATS OF GLYCEROL THAT THE ENTROPY OF A GLASS EXCEEDS THAT OF A CRYSTAL AT THE ABSOLUTE ZERO , 1923 .

[44]  I. Oppenheim,et al.  Low-Temperature Relaxation and Entropic Barriers in Supercooled Liquids , 1994, Science.

[45]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[46]  J. C. Southard The Thermal Properties of Crystalline and Glassy Boron Trioxide1 , 1941 .

[47]  R. Cole,et al.  Approach to glassy behavior of dielectric relaxation in 3‐bromopentane from 298 to 107 K , 1986 .

[48]  I. Hodge Enthalpy relaxation and recovery in amorphous materials , 1994 .

[49]  Kaori Ito,et al.  Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water , 1999, Nature.

[50]  H. Suga,et al.  Calorimetric study of the glassy state XII. Plural glass-transition phenomena of ethanol☆ , 1977 .

[51]  K. Ngai Removal of cooperativity in glass-forming materials to reveal the primitive -relaxation of the coupling model , 1999 .

[52]  W. Giauque,et al.  The Heat Capacity and Entropy of Sulfuric Acid Trihydrate Glass and Crystals from 15 to 300°K.1 , 1952 .

[53]  Donald R Uhlmann,et al.  Viscous flow in simple organic liquids , 1972 .

[54]  H. Morawetz,et al.  On the Nonexistence of Crankshaft-like Motions in Dilute Solutions of Flexible-Chain Molecules , 1980 .

[55]  A. B. Bestul,et al.  Heat Capacity and Thermodynamic Properties of o‐Terphenyl Crystal, Glass, and Liquid , 1972 .

[56]  K. Ngai,et al.  THE APPLICATION OF THE ENERGY LANDSCAPE MODEL TO POLYMERS , 1999 .

[57]  G. P. Johari,et al.  Temperature dependence of molecular relaxation rates and of viscosity of glass-forming liquids , 1990 .

[58]  S. Matsuoka,et al.  Relaxation Phenomena in Polymers , 1992 .

[59]  D. W. Scott,et al.  2-Methyl-1-propanethiol: Chemical Thermodynamic Properties and Rotational Isomerism1 , 1958 .

[60]  M. Hanaya,et al.  Calorimetric study of triphenylethene: observation of homogeneous-nucleation-based crystallization , 1998 .

[61]  R. L. Cohen,et al.  Moessbauer studies of hydrogen absorption in Dy, DyMn/sub 2/, DyFe/sub 2/, DyCo/sub 2/, and DyNi/sub 2/ , 1980 .

[62]  D. Turnbull,et al.  ON THE FREE-VOLUME MODEL OF THE LIQUID-GLASS TRANSITION. , 1970 .

[63]  Kremer,et al.  Dielectric investigations of the dynamic glass transition in nanopores. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  A. B. Bestul,et al.  Heat capacities of selenium crystal (trigonal), glass, and liquid from 5 to 360 K , 1974 .

[65]  O. Yamamuro,et al.  CALORIMETRIC STUDY ON STRUCTURAL RELAXATION OF 1-PENTENE IN VAPOR-DEPOSITED AND LIQUID-QUENCHED GLASSY STATES , 1995 .

[66]  I. Hodge Adam-Gibbs Formulation of Enthalpy Relaxation Near the Glass Transition , 1997, Journal of research of the National Institute of Standards and Technology.

[67]  Y. Shirota,et al.  A calorimetric study on the configurational enthalpy and low-energy excitation of ground amorphous solid and liquid-quenched glass of 1, 3, 5-tri--naphthylbenzene , 1996 .