XMAP215 Is a Processive Microtubule Polymerase

[1]  E D Salmon,et al.  Microtubule assembly in clarified Xenopus egg extracts. , 1997, Cell motility and the cytoskeleton.

[2]  H. Erickson,et al.  Kinetics of protein-protein association explained by Brownian dynamics computer simulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Diez,et al.  The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. , 2003, Molecular cell.

[4]  K. Kemphues,et al.  ZYG-9, A Caenorhabditis elegans Protein Required for Microtubule Organization and Function, Is a Component of Meiotic and Mitotic Spindle Poles , 1998, The Journal of cell biology.

[5]  Anthony A Hyman,et al.  Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. , 2005, Developmental cell.

[6]  R. Vale,et al.  Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. , 2007, Molecular cell.

[7]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[8]  A. Hyman,et al.  Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis , 2005, The Journal of cell biology.

[9]  T. Toda,et al.  Fission yeast ch‐TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2‐dependent spindle checkpoint , 2001, The EMBO journal.

[10]  A. Hyman,et al.  Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. , 1993, Methods in cell biology.

[11]  Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study , 1991 .

[12]  Stefan Westermann,et al.  The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends , 2006, Nature.

[13]  E. Peterman,et al.  Allosteric inhibition of kinesin-5 modulates its processive directional motility , 2006, Nature chemical biology.

[14]  Anthony A Hyman,et al.  Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. , 2007, Structure.

[15]  Ronald D. Vale,et al.  Engineering the Processive Run Length of the Kinesin Motor , 2000, The Journal of cell biology.

[16]  Viji M. Draviam,et al.  The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. , 2003, Genes & development.

[17]  Anthony A. Hyman,et al.  Structural Transitions at Microtubule Ends Correlate with Their Dynamic Properties in Xenopus Egg Extracts , 2000, The Journal of cell biology.

[18]  L. Cassimeris,et al.  XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover , 1994, The Journal of cell biology.

[19]  L. Cassimeris,et al.  TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. , 2004, Molecular biology of the cell.

[20]  T. Pollard,et al.  Control of the Assembly of ATP- and ADP-Actin by Formins and Profilin , 2006, Cell.

[21]  Stefanie Kandels-Lewis,et al.  Discrete States of a Protein Interaction Network Govern Interphase and Mitotic Microtubule Dynamics , 2007, PLoS biology.

[22]  A. Hyman,et al.  Preparation of modified tubulins. , 1991, Methods in enzymology.

[23]  R. Gräf,et al.  The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules , 2004, BMC Cell Biology.

[24]  H. Erickson,et al.  Cell adhesion molecule L1 in folded (horseshoe) and extended conformations. , 2001, Molecular biology of the cell.

[25]  Michael J. Lee,et al.  Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour , 2001, Nature Cell Biology.

[26]  Alex Mogilner,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2002 .

[27]  Marie-France Carlier,et al.  Formin Is a Processive Motor that Requires Profilin to Accelerate Actin Assembly and Associated ATP Hydrolysis , 2004, Cell.

[28]  A. Hyman,et al.  Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts , 1999, Nature Cell Biology.

[29]  T. Mitchison,et al.  Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification , 2003, The Journal of cell biology.

[30]  M. Kirschner,et al.  A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end , 1987, The Journal of cell biology.

[31]  A. Hyman,et al.  Reconstitution of Physiological Microtubule Dynamics Using Purified Components , 2001, Science.

[32]  E. Larquet,et al.  How ATP Hydrolysis Controls Filament Assembly from Profilin-Actin , 2007, Journal of Biological Chemistry.

[33]  Anthony Hyman,et al.  Stu2p binds tubulin and undergoes an open-to-closed conformational change , 2006, The Journal of cell biology.

[34]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[35]  H. Erickson,et al.  XMAP215 is a long thin molecule that does not increase microtubule stiffness. , 2001, Journal of cell science.

[36]  M. Kirschner,et al.  Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs , 1987, The Journal of cell biology.

[37]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[38]  A. Hyman,et al.  XMAP215: a key component of the dynamic microtubule cytoskeleton. , 2002, Trends in cell biology.

[39]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[40]  R. Wollman,et al.  Length Control of the Metaphase Spindle , 2005, Current Biology.

[41]  M. Eck,et al.  Mechanism and function of formins in the control of actin assembly. , 2007, Annual review of biochemistry.

[42]  G. Wasteneys,et al.  MOR1 is essential for organizing cortical microtubules in plants , 2001, Nature.

[43]  J. E. Celis,et al.  Cell Biology: A Laboratory Handbook , 1997 .

[44]  C. Larroque,et al.  The Interaction of TOGp with Microtubules and Tubulin* , 2000, The Journal of Biological Chemistry.

[45]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[46]  B. Habermann,et al.  Stu2 Promotes Mitotic Spindle Elongation in Anaphase , 2001, The Journal of cell biology.

[47]  M. Sheetz,et al.  The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. , 2000, Biophysical journal.

[48]  A. Hyman,et al.  Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end–binding microtubule destabilizer , 2003, The Journal of cell biology.

[49]  T. Toda,et al.  Cold‐sensitive and caffeine‐supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. , 1988, The EMBO journal.

[50]  Anthony A. Hyman,et al.  Caenorhabditis elegans TAC-1 and ZYG-9 Form a Complex that Is Essential for Long Astral and Spindle Microtubules , 2003, Current Biology.

[51]  Thomas D. Pollard,et al.  Myosin Va maneuvers through actin intersections and diffuses along microtubules , 2007, Proceedings of the National Academy of Sciences.

[52]  G. Goshima,et al.  M phase–specific kinetochore proteins in fission yeast Microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase , 2001, Current Biology.

[53]  L. Cassimeris,et al.  Phosphorylation by CDK1 regulates XMAP215 function in vitro. , 1999, Cell motility and the cytoskeleton.

[54]  K. Weber,et al.  Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues , 1978, Cell.

[55]  A. Hyman,et al.  Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence , 1991, Journal of Cell Science.

[56]  D. Gard,et al.  MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. , 2004, International review of cytology.

[57]  Michael K. Rosen,et al.  Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain , 2005, Nature.

[58]  H. Ohkura,et al.  Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila , 2005, The EMBO journal.

[59]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[60]  T. Toda,et al.  Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast , 2007, Nature.