Stochastic collocation on unstructured multivariate meshes

Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.

[1]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[2]  Xiu Yang,et al.  Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..

[3]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[4]  L. Györfi,et al.  A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .

[5]  Tao Zhou,et al.  Multivariate Discrete Least-Squares Approximations with a New Type of Collocation Grid , 2014, SIAM J. Sci. Comput..

[6]  Stephen J. Dilworth,et al.  Explicit constructions of RIP matrices and related problems , 2010, ArXiv.

[7]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.

[8]  L. P. BOS,et al.  On the Calculuation of Approximate Fekete Points: the Univariate Case , 2008 .

[9]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[10]  Kyle A. Gallivan,et al.  A compressed sensing approach for partial differential equations with random input data , 2012 .

[11]  Kai Hormann,et al.  Barycentric rational interpolation at quasi-equidistant nodes , 2012 .

[12]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[13]  L. Brutman,et al.  ON THE LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION , 1978 .

[14]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[15]  Wolfgang Dahmen,et al.  Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..

[16]  A. Weil On Some Exponential Sums. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[18]  Dongbin Xiu,et al.  Weighted discrete least-squares polynomial approximation using randomized quadratures , 2015, J. Comput. Phys..

[19]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[20]  Thomas Bloom,et al.  WEIGHTED PLURIPOTENTIAL THEORY , 2006 .

[21]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[22]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[23]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[24]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[25]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[26]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[27]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[28]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[29]  Alvise Sommariva,et al.  Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..

[30]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[31]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[32]  Dongbin Xiu,et al.  Generalised Polynomial Chaos for a Class of Linear Conservation Laws , 2012, J. Sci. Comput..

[33]  Marco Vianello,et al.  Bivariate polynomial interpolation on the square at new nodal sets , 2005, Appl. Math. Comput..

[34]  M. A. Iwen Simple deterministically constructible RIP matrices with sublinear fourier sampling requirements , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[35]  J. Szabados,et al.  Weighted Lagrange and Hermite–Fejér interpolation on the real line , 1997 .

[36]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[37]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[38]  Raul Tempone,et al.  MATHICSE Technical Report : Analysis of the discrete $L^2$ projection on polynomial spaces with random evaluations , 2011 .

[39]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[40]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[41]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[42]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[43]  C. D. Boor,et al.  Computational aspects of polynomial interpolation in several variables , 1992 .

[44]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[45]  D. Lubinsky A Survey of Weighted Polynomial Approximation with Exponential Weights , 2007 .

[46]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[47]  C. D. Boor,et al.  The least solution for the polynomial interpolation problem , 1992 .

[48]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[49]  Rayan Saab,et al.  Sparco: A Testing Framework for Sparse Reconstruction , 2007 .

[50]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[51]  Robert Berman,et al.  Fekete points and convergence towards equilibrium measures on complex manifolds , 2009, 0907.2820.

[52]  R. Walters,et al.  Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics , 2010 .

[53]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[54]  Dongbin Xiu,et al.  Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..

[55]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[56]  Philip C. Curtis $n$-parameter families and best approximation. , 1959 .

[57]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[58]  Norm Levenberg,et al.  WEIGHTED PLURIPOTENTIAL THEORY RESULTS OF BERMAN-BOUCKSOM , 2010, 1010.4035.

[59]  C. D. Boor Gauss elimination by segments and multivariate polynomial interpolation , 1994 .

[60]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[61]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[62]  L. Trefethen,et al.  Two results on polynomial interpolation in equally spaced points , 1991 .

[63]  Zhiqiang Xu,et al.  Deterministic sampling of sparse trigonometric polynomials , 2010, J. Complex..

[64]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[65]  Enrique Bendito,et al.  Estimation of Fekete points , 2007, J. Comput. Phys..

[66]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[67]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[68]  D. M. Matjila Bounds for Lebesgue Functions for Freud Weights , 1994 .

[69]  J. Breidt,et al.  A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis , 2011, SIAM J. Numer. Anal..

[70]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[71]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[72]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[73]  Tao Zhou,et al.  On Sparse Interpolation and the Design of Deterministic Interpolation Points , 2013, SIAM J. Sci. Comput..

[74]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[75]  R. Günttner Evaluation of Lebesgue Constants , 1980 .

[76]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[77]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[78]  Len Bos,et al.  Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .

[79]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[80]  Akil C. Narayan,et al.  Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..

[81]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[82]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[83]  Albert Cohen,et al.  Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .

[84]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[85]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[86]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[87]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[88]  D. M. Matjila Bounds for the weighted Lebesgue functions for Freud weights on a larger interval , 1995 .

[89]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[90]  J. C. Mairhuber ON HAAR'S THEOREM CONCERNING CHEBYCHEV APPROXIMATION PROBLEMS HAVING UNIQUE SOLUTIONS' , 1956 .

[91]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[92]  Daniel M. Tartakovsky,et al.  Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..

[93]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[94]  R. DeVore,et al.  Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions , 2007 .

[95]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[96]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[97]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[98]  Tao Tang,et al.  On Discrete Least-Squares Projection in Unbounded Domain with Random Evaluations and its Application to Parametric Uncertainty Quantification , 2014, SIAM J. Sci. Comput..