Stochastic collocation on unstructured multivariate meshes
暂无分享,去创建一个
[1] Bruno Després,et al. Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..
[2] Xiu Yang,et al. Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..
[3] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[4] L. Györfi,et al. A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .
[5] Tao Zhou,et al. Multivariate Discrete Least-Squares Approximations with a New Type of Collocation Grid , 2014, SIAM J. Sci. Comput..
[6] Stephen J. Dilworth,et al. Explicit constructions of RIP matrices and related problems , 2010, ArXiv.
[7] Marco Vianello,et al. Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.
[8] L. P. BOS,et al. On the Calculuation of Approximate Fekete Points: the Univariate Case , 2008 .
[9] R. DeVore,et al. Compressed sensing and best k-term approximation , 2008 .
[10] Kyle A. Gallivan,et al. A compressed sensing approach for partial differential equations with random input data , 2012 .
[11] Kai Hormann,et al. Barycentric rational interpolation at quasi-equidistant nodes , 2012 .
[12] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[13] L. Brutman,et al. ON THE LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION , 1978 .
[14] E. M. Wright,et al. Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.
[15] Wolfgang Dahmen,et al. Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..
[16] A. Weil. On Some Exponential Sums. , 1948, Proceedings of the National Academy of Sciences of the United States of America.
[17] Alvise Sommariva,et al. Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..
[18] Dongbin Xiu,et al. Weighted discrete least-squares polynomial approximation using randomized quadratures , 2015, J. Comput. Phys..
[19] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[20] Thomas Bloom,et al. WEIGHTED PLURIPOTENTIAL THEORY , 2006 .
[21] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[22] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[23] Holger Rauhut,et al. Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.
[24] Max Gunzburger,et al. POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .
[25] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[26] Fabio Nobile,et al. Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..
[27] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[28] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[29] Alvise Sommariva,et al. Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..
[30] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[31] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[32] Dongbin Xiu,et al. Generalised Polynomial Chaos for a Class of Linear Conservation Laws , 2012, J. Sci. Comput..
[33] Marco Vianello,et al. Bivariate polynomial interpolation on the square at new nodal sets , 2005, Appl. Math. Comput..
[34] M. A. Iwen. Simple deterministically constructible RIP matrices with sublinear fourier sampling requirements , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.
[35] J. Szabados,et al. Weighted Lagrange and Hermite–Fejér interpolation on the real line , 1997 .
[36] D. Xiu,et al. STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .
[37] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[38] Raul Tempone,et al. MATHICSE Technical Report : Analysis of the discrete $L^2$ projection on polynomial spaces with random evaluations , 2011 .
[39] R. Grandhi,et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .
[40] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[41] Albert Cohen,et al. On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.
[42] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[43] C. D. Boor,et al. Computational aspects of polynomial interpolation in several variables , 1992 .
[44] Tim Warburton,et al. An explicit construction of interpolation nodes on the simplex , 2007 .
[45] D. Lubinsky. A Survey of Weighted Polynomial Approximation with Exponential Weights , 2007 .
[46] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[47] C. D. Boor,et al. The least solution for the polynomial interpolation problem , 1992 .
[48] M. Eldred,et al. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .
[49] Rayan Saab,et al. Sparco: A Testing Framework for Sparse Reconstruction , 2007 .
[50] J. Hesthaven,et al. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .
[51] Robert Berman,et al. Fekete points and convergence towards equilibrium measures on complex manifolds , 2009, 0907.2820.
[52] R. Walters,et al. Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics , 2010 .
[53] M. Eldred. Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .
[54] Dongbin Xiu,et al. Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..
[55] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[56] Philip C. Curtis. $n$-parameter families and best approximation. , 1959 .
[57] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[58] Norm Levenberg,et al. WEIGHTED PLURIPOTENTIAL THEORY RESULTS OF BERMAN-BOUCKSOM , 2010, 1010.4035.
[59] C. D. Boor. Gauss elimination by segments and multivariate polynomial interpolation , 1994 .
[60] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[61] Massimo Fornasier,et al. Compressive Sensing and Structured Random Matrices , 2010 .
[62] L. Trefethen,et al. Two results on polynomial interpolation in equally spaced points , 1991 .
[63] Zhiqiang Xu,et al. Deterministic sampling of sparse trigonometric polynomials , 2010, J. Complex..
[64] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[65] Enrique Bendito,et al. Estimation of Fekete points , 2007, J. Comput. Phys..
[66] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[67] I. Kevrekidis,et al. Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .
[68] D. M. Matjila. Bounds for Lebesgue Functions for Freud Weights , 1994 .
[69] J. Breidt,et al. A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis , 2011, SIAM J. Numer. Anal..
[70] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[71] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[72] O. L. Maître,et al. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .
[73] Tao Zhou,et al. On Sparse Interpolation and the Design of Deterministic Interpolation Points , 2013, SIAM J. Sci. Comput..
[74] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[75] R. Günttner. Evaluation of Lebesgue Constants , 1980 .
[76] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[77] D. Rovas,et al. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .
[78] Len Bos,et al. Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .
[79] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[80] Akil C. Narayan,et al. Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..
[81] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[82] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[83] Albert Cohen,et al. Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .
[84] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[85] Ronald A. DeVore,et al. Deterministic constructions of compressed sensing matrices , 2007, J. Complex..
[86] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[87] Holger Rauhut,et al. Compressive Sensing with structured random matrices , 2012 .
[88] D. M. Matjila. Bounds for the weighted Lebesgue functions for Freud weights on a larger interval , 1995 .
[89] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[90] J. C. Mairhuber. ON HAAR'S THEOREM CONCERNING CHEBYCHEV APPROXIMATION PROBLEMS HAVING UNIQUE SOLUTIONS' , 1956 .
[91] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[92] Daniel M. Tartakovsky,et al. Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..
[93] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[94] R. DeVore,et al. Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions , 2007 .
[95] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[96] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[97] Alireza Doostan,et al. A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..
[98] Tao Tang,et al. On Discrete Least-Squares Projection in Unbounded Domain with Random Evaluations and its Application to Parametric Uncertainty Quantification , 2014, SIAM J. Sci. Comput..