Generalized isotone projection cones

This article extends the notion of isotone projection cones to generalized isotone projection cones by replacing the usual metric projection with a generalized one. It is shown that all such cones are simplicial.

[1]  Patricia Mariela Morillas Dykstra's algorithm with strategies for projecting onto certain polyhedral cones , 2005, Appl. Math. Comput..

[2]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[3]  G. Isac,et al.  Every generating isotone projection cone is latticial and correct , 1990 .

[4]  G. Isac,et al.  Monotonicity of metric projections onto positive cones of ordered Euclidean spaces , 1986 .

[5]  F. Plastria,et al.  Gauge Distances and Median Hyperplanes , 2001 .

[6]  Frank Plastria,et al.  Optimal Expected-Distance Separating Halfspace , 2008, Math. Oper. Res..

[7]  Sandor Nemeth,et al.  Isotone retraction cones in Hilbert spaces , 2010 .

[8]  V. P. Sreedharan,et al.  Theorems of the Alternative and Duality , 1997 .

[9]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[10]  Hein Hundal,et al.  The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case , 1994 .

[11]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[12]  Sandor Nemeth,et al.  Iterative methods for nonlinear complementarity problems on isotone projection cones , 2009 .

[13]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[14]  M. Carter Computer graphics: Principles and practice , 1997 .

[15]  G. W. Reddien,et al.  Projection Methods , 2021, Introduction to the Numerical Solution of Markov Chains.

[16]  G. Isac,et al.  Projection methods, isotone projection cones, and the complementarity problem , 1990 .

[17]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[18]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[19]  许树声 ESTIMATION OF THE CONVERGENCE RATE OF DYKSTRA’S CYCLIC PROJECTIONS ALGORITHM IN POLYHEDRAL CASE , 2000 .

[20]  M. Tan,et al.  A FAST EM ALGORITHM FOR QUADRATIC OPTIMIZATION SUBJECT TO CONVEX CONSTRAINTS , 2007 .

[21]  A. Papadopoulos Metric Spaces, Convexity and Nonpositive Curvature , 2004 .

[22]  Sandor Nemeth,et al.  Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum , 2010 .

[23]  Robert H. Berk,et al.  Dual Cones, Dual Norms, and Simultaneous Inference for Partially Ordered Means , 1996 .

[24]  A. B. Németh,et al.  How to project onto an isotone projection cone , 2010 .

[25]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[26]  A. Banerjee Convex Analysis and Optimization , 2006 .

[27]  Achiya Dax,et al.  The distance between two convex sets , 2006 .

[28]  Dan Butnariu,et al.  A Proximal-Projection Method for Finding Zeros of Set-Valued Operators , 2007, SIAM J. Control. Optim..

[29]  Olvi L. Mangasarian,et al.  Arbitrary-norm separating plane , 1999, Oper. Res. Lett..

[30]  Olvi L. Mangasarian,et al.  Polyhedral Boundary Projection , 1999, SIAM J. Optim..

[31]  I. Csiszár Generalized projections for non-negative functions , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[32]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .