Generalized isotone projection cones
暂无分享,去创建一个
[1] Patricia Mariela Morillas. Dykstra's algorithm with strategies for projecting onto certain polyhedral cones , 2005, Appl. Math. Comput..
[2] E. H. Zarantonello. Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .
[3] G. Isac,et al. Every generating isotone projection cone is latticial and correct , 1990 .
[4] G. Isac,et al. Monotonicity of metric projections onto positive cones of ordered Euclidean spaces , 1986 .
[5] F. Plastria,et al. Gauge Distances and Median Hyperplanes , 2001 .
[6] Frank Plastria,et al. Optimal Expected-Distance Separating Halfspace , 2008, Math. Oper. Res..
[7] Sandor Nemeth,et al. Isotone retraction cones in Hilbert spaces , 2010 .
[8] V. P. Sreedharan,et al. Theorems of the Alternative and Duality , 1997 .
[9] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[10] Hein Hundal,et al. The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case , 1994 .
[11] R. Dykstra. An Algorithm for Restricted Least Squares Regression , 1983 .
[12] Sandor Nemeth,et al. Iterative methods for nonlinear complementarity problems on isotone projection cones , 2009 .
[13] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[14] M. Carter. Computer graphics: Principles and practice , 1997 .
[15] G. W. Reddien,et al. Projection Methods , 2021, Introduction to the Numerical Solution of Markov Chains.
[16] G. Isac,et al. Projection methods, isotone projection cones, and the complementarity problem , 1990 .
[17] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[18] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[19] 许树声. ESTIMATION OF THE CONVERGENCE RATE OF DYKSTRA’S CYCLIC PROJECTIONS ALGORITHM IN POLYHEDRAL CASE , 2000 .
[20] M. Tan,et al. A FAST EM ALGORITHM FOR QUADRATIC OPTIMIZATION SUBJECT TO CONVEX CONSTRAINTS , 2007 .
[21] A. Papadopoulos. Metric Spaces, Convexity and Nonpositive Curvature , 2004 .
[22] Sandor Nemeth,et al. Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum , 2010 .
[23] Robert H. Berk,et al. Dual Cones, Dual Norms, and Simultaneous Inference for Partially Ordered Means , 1996 .
[24] A. B. Németh,et al. How to project onto an isotone projection cone , 2010 .
[25] Jon C. Dattorro,et al. Convex Optimization & Euclidean Distance Geometry , 2004 .
[26] A. Banerjee. Convex Analysis and Optimization , 2006 .
[27] Achiya Dax,et al. The distance between two convex sets , 2006 .
[28] Dan Butnariu,et al. A Proximal-Projection Method for Finding Zeros of Set-Valued Operators , 2007, SIAM J. Control. Optim..
[29] Olvi L. Mangasarian,et al. Arbitrary-norm separating plane , 1999, Oper. Res. Lett..
[30] Olvi L. Mangasarian,et al. Polyhedral Boundary Projection , 1999, SIAM J. Optim..
[31] I. Csiszár. Generalized projections for non-negative functions , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.
[32] G. Stewart. On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .