Calculation of bound-state energies from a variational functional method

A variational functional method is improved and generalized in order to obtain approximate bound-state energies of a wide variety of quantum-mechanical systems. Calculations on the discrete spectrum of the hydrogen atom in a magnetic field and the bounded harmonic oscillator show that the procedure is very promising.

[1]  E. Castro,et al.  Comments about energies of parameter-dependent systems , 1983 .

[2]  E. Castro,et al.  Scaling-variational treatment of anharmonic oscillators , 1983 .

[3]  E. Castro,et al.  Hypervirial‐perturbational treatment of the bounded hydrogen atom , 1982 .

[4]  C. Bender,et al.  Semiclassical perturbation theory for the hydrogen atom in a uniform magnetic field , 1982 .

[5]  H. Gersch,et al.  Approximate energy levels and sizes of bound quantum systems , 1982 .

[6]  E. Castro,et al.  Hypervirial calculation of energy eigenvalues of a bounded centrally located harmonic oscillator , 1981 .

[7]  H. Ruder,et al.  Energy levels and oscillator strengths for the two-body problem in magnetic fields , 1981 .

[8]  E. Castro,et al.  Hypervirial analysis of enclosed quantum mechanical systems. I. Dirichlet boundary conditions , 1981 .

[9]  H. Ruder,et al.  Electromagnetic transitions for the hydrogen atom in strong magnetic fields , 1980 .

[10]  G. Rosen Solutional method for the energies of a parameter-dependent system , 1979 .

[11]  H. Orland Energies of Parameter-Dependent Systems , 1979 .

[12]  J. Simola,et al.  Energy levels of hydrogen atoms in a strong magnetic field , 1978 .

[13]  K. Banerjee,et al.  The anharmonic oscillator , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  R. Garstang Atoms in high magnetic fields (white dwarfs) , 1977 .

[15]  E. V. Ludeña SCF calculations for hydrogen in a spherical box , 1977 .

[16]  J. A. Weil,et al.  On the hyperfine splitting of the hydrogen atom in a spherical box , 1976 .

[17]  Richard Vawter Energy eigenvalues of a bounded centrally located harmonic oscillator , 1973 .

[18]  H. Praddaude Energy Levels of Hydrogenlike Atoms in a Magnetic Field , 1972 .

[19]  V. Canuto,et al.  Hydrogen atom in intense magnetic field , 1972 .

[20]  D. Cabib,et al.  Ground and first excited states of excitons in a magnetic field , 1972 .

[21]  D. S. Kothari,et al.  The quantum mechanics of a bounded linear harmonic oscillator , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  J. C. Slater The Virial and Molecular Structure , 1933 .