Duality in Entanglement-Assisted Quantum Error Correction

The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is defined from the orthogonal group of a simplified stabilizer group. From the Poisson summation formula, this duality leads to the MacWilliams identities and linear programming bounds for EAQEC codes. We establish a table of upper and lower bounds on the minimum distance of any maximal-entanglement EAQEC code with length up to 15 channel qubits.

[1]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[2]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[3]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[4]  Raymond Laflamme,et al.  Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .

[5]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  Anthony W. Knapp Basic Algebra , 2006 .

[8]  S. Litsyn,et al.  Upper bounds on the size of quantum codes , 1997, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[9]  T. Brun,et al.  Entanglement increases the error-correcting ability of quantum error-correcting codes , 2010, 1008.2598.

[10]  Mark M. Wilde,et al.  Dualities and Identities for Maximal-Entanglement Quantum Codes , 2010, ArXiv.

[11]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[12]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[13]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[14]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Isaac L. Chuang,et al.  Entanglement in the stabilizer formalism , 2004 .

[16]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[17]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  Eric M. Rains Quantum Weight Enumerators , 1998, IEEE Trans. Inf. Theory.

[19]  Eric M. Rains Quantum shadow enumerators , 1999, IEEE Trans. Inf. Theory.

[20]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[21]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[22]  Mark M. Wilde,et al.  Entanglement boosts quantum turbo codes , 2011, ISIT.

[23]  Ching-Yi Lai,et al.  Entanglement-Assisted Quantum Error-Correcting Codes with Imperfect Ebits , 2014 .

[24]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[27]  Eric M. Rains Monotonicity of the quantum linear programming bound , 1999, IEEE Trans. Inf. Theory.

[28]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  C. Macchiavello,et al.  Error Correction in Quantum Communication , 1996, quant-ph/9602022.

[30]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[32]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[33]  T. Brun,et al.  Optimal entanglement formulas for entanglement-assisted quantum coding , 2008, 0804.1404.