A Portable MIDI Controller Using EMG-Based Individual Finger Motion Classification

Classifying the motion of the five fingers of the hand using non-invasive bio-signal readings from the forearm is still an unsolved research challenge. Its solution is relevant to hands-free remote control devices, on-stage live performances, consumer entertainment, the video game industry, and most importantly the design of hand prosthetics for amputees. This paper proposes a solution that uses the continuous wavelet transform (CWT) decompositions of electromyography (EMG) signals from the forearm muscles, and Support Vector Machines (SVM) classification. The resulting design is a low cost, low power and low complexity portable embedded system that is strapped to the arm, where it collects EMG signals, classifies them in real-time, and sends the resulting class labels via Bluetooth to a remote interface. These labels are then converted into musical instrument digital interface (MIDI) commands that can be used to control any MIDI-controllable device. While the design is still at the prototype stage at best, it provides a proof-of-concept of non-invasive finger motion classification solely based on EMG readings from the forearm muscles. Experimental simulation of the expected system achieved 91% accuracy.

[1]  Gabriella Olmo,et al.  Analysis of EMG signals by means of the matched wavelet transform , 1997 .

[2]  K. Englehart,et al.  Classification of the myoelectric signal using time-frequency based representations. , 1999, Medical engineering & physics.

[3]  P. A. Parker,et al.  Improving myoelectric signal classification using wavelet packets and principal components analysis , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.