Stability of Frames Generated by Nonlinear Fourier atoms

In this paper, we study the stability of two kinds of frames generated by nonlinear Fourier atoms. The first result is the Kadec type ¼-theorem. The second states that the nonlinear windowed Fourier atoms form a frame of L2(ℝ).

[1]  Qiuhui Chen,et al.  Analytic unit quadrature signals with nonlinear phase , 2005 .

[2]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[3]  Bernard C. Picinbono,et al.  On instantaneous amplitude and phase of signals , 1997, IEEE Trans. Signal Process..

[4]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[5]  Yuesheng Xu,et al.  A B-spline approach for empirical mode decompositions , 2006, Adv. Comput. Math..

[6]  Qiuhui Chen,et al.  Two families of unit analytic signals with nonlinear phase , 2006 .

[7]  R. Balan Stability theorems for Fourier frames and wavelet Riesz bases , 1997 .

[8]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[9]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[10]  A. Nuttall,et al.  On the quadrature approximation to the Hilbert transform of modulated signals , 1966 .

[11]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[12]  Qiuhui Chen,et al.  Time-Frequency Aspects of Nonlinear Fourier Atoms , 2006 .

[13]  D. E. Vakman,et al.  METHODOLOGICAL NOTES: Amplitude, phase, frequency---fundamental concepts of oscillation theory , 1977 .

[14]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[15]  O. Christensen A Paley-Wiener theorem for frames , 1995 .

[16]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[17]  Z. Nehari Bounded analytic functions , 1950 .

[18]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Edward B. Saff,et al.  Fundamentals of complex analysis for mathematics, science, and engineering , 1976 .