An improved algorithm for the computation of structural invariants of a system pencil and related geometric aspects
暂无分享,去创建一个
[1] V. Kublanovskaya,et al. On a method of solving the complete eigenvalue problem for a degenerate matrix , 1966 .
[2] Peter Lancaster,et al. The theory of matrices , 1969 .
[3] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[4] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[5] P. Dooren. Reducing subspaces: Definitions, properties and algorithms , 1983 .
[6] Paul Van Dooren,et al. Factorization of a rational matrix: The singular case , 1984 .
[7] P. Dooren,et al. An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .
[8] Paul Van Dooren,et al. Computational aspects of the Jordan canonical form , 1990 .
[9] J. H. Wilkinson,et al. Reliable Numerical Computation. , 1992 .
[10] Paul Van Dooren,et al. Computation of structural invariants of generalized state-space systems , 1994, Autom..
[11] A. Varga. On stabilization methods of descriptor systems , 1995 .
[12] Vlad Ionescu,et al. GENERALIZED CONTINUOUS-TIME RICCATI THEORY , 1996 .
[13] Vlad Ionescu,et al. Generalized Discrete-Time Riccati Theory , 1996 .