A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres

[1]  Hongxing Xu,et al.  Modeling the optical response of nanoparticle-based surface plasmon resonance sensors , 2002 .

[2]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[3]  Phase-sensitive near-field imaging of metal nanoparticles , 2002 .

[4]  L. Tay,et al.  SERS and the Single Molecule , 2002 .

[5]  David R. Smith,et al.  Plasmon resonances of silver nanowires with a nonregular cross section , 2001 .

[6]  R. Wannemacher,et al.  Failure of local Mie theory: optical spectra of colloidal aggregates , 2001 .

[7]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[8]  F. Keilmann,et al.  Complex optical constants on a subwavelength scale. , 2000, Physical review letters.

[9]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  T Kobayashi,et al.  Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. , 2000, Optics letters.

[12]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[13]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[14]  Christine D. Keating,et al.  Protein:Colloid Conjugates for Surface Enhanced Raman Scattering: Stability and Control of Protein Orientation , 1998 .

[15]  M. Natan,et al.  Heightened Electromagnetic Fields between Metal Nanoparticles: Surface Enhanced Raman Scattering from Metal−Cytochrome c-Metal Sandwiches , 1998 .

[16]  G. Göbel Micron and sub-micron aerosol sizing with a standard phase-Doppler anemometer , 1998 .

[17]  T. Wriedt,et al.  Micron and sub-micron aerosol sizing with a standard phase-Doppler anemometer , 1998 .

[18]  V. Ovod,et al.  Modified conventional plane-wave scattering approach to estimate performance characteristics of laser particle-size analysers , 1998 .

[19]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[20]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[21]  M. Quinten,et al.  Scattering and absorption by spherical multilayer particles , 1994 .

[22]  K A Fuller,et al.  Optical resonances and two-sphere systems. , 1991, Applied optics.

[23]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[24]  K. Ohtaka,et al.  Surface Enhanced Raman Scattering by Metal Spheres. I. Cluster Effect , 1983 .

[25]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[26]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[27]  Y. Lo,et al.  Multiple scattering of EM waves by spheres part I--Multipole expansion and ray-optical solutions , 1971 .

[28]  O. Cruzan Translational addition theorems for spherical vector wave functions , 1962 .

[29]  S. Stein ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .

[30]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[31]  J. Swinburne Electromagnetic Theory , 1894, Nature.