A new deflated block GCROT(m, k) method for the solution of linear systems with multiple right-hand sides
暂无分享,去创建一个
Jing Meng | Yan-Fei Jing | Hou-Biao Li | Hou-biao Li | Y. Jing | Jing Meng
[1] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[2] P. Soudais. Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies , 1994 .
[3] Valeria Simoncini. A Stabilized QMR Version of Block BiCG , 1997 .
[4] Zhaojun Bai,et al. The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..
[5] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[6] Simon Heybrock,et al. A nested Krylov subspace method to compute the sign function of large complex matrices , 2009, Comput. Phys. Commun..
[7] M. Sadkane,et al. Exact and inexact breakdowns in the block GMRES method , 2006 .
[8] M. Heyouni,et al. The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides , 2001, Numerical Algorithms.
[9] Na Li,et al. Crout versions of ILU factorization with pivoting for sparse symmetric matrices. , 2005 .
[10] Khalide Jbilou,et al. The block Lanczos method for linear systems with multiple right-hand sides , 2004 .
[11] H. Sadok,et al. A block version of BiCGSTAB for linear systems with multiple right-hand sides. , 2003 .
[12] Jing Meng,et al. A block GCROT(m, k) method for linear systems with multiple right-hand sides , 2014, J. Comput. Appl. Math..
[13] E. Jessup,et al. AN EFFICIENT BLOCK VARIANT OF GMRES , 2022 .
[14] E. Sturler,et al. A Block Iterative Solver for Complex Non-Hermitian Systems Applied to Large-Scale, Electronic-Structure Calculations , 2002 .
[15] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[16] Andreas Stathopoulos,et al. Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..
[17] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[18] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[19] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[20] Baojiang Zhong,et al. Simpler block GMRES for nonsymmetric systems with multiple right-hand sides. , 2008 .
[21] Tony F. Chan,et al. Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..
[22] H. Sadok,et al. OBLIQUE PROJECTION METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES , 2005 .
[23] Lei Du,et al. A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..
[24] Tetsuya Sakurai,et al. Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD , 2009, Comput. Phys. Commun..
[25] Xian-Ming Gu,et al. A deflated block flexible GMRES-DR method for linear systems with multiple right-hand sides , 2014 .
[26] Faezeh Toutounian,et al. The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides , 2006, Appl. Math. Comput..
[27] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[28] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[29] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[30] M. Heyouni,et al. Matrix Krylov subspace methods for linear systems with multiple right-hand sides , 2005, Numerical Algorithms.
[31] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[32] Henri Calandra,et al. A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides , 2013, SIAM J. Sci. Comput..
[33] V. Simoncini,et al. Convergence properties of block GMRES and matrix polynomials , 1996 .
[34] Eric L. Miller,et al. QMR-Based Projection Techniques for the Solution of Non-Hermitian Systems with Multiple Right-Hand Sides , 2001, SIAM J. Sci. Comput..
[35] Guangye Li,et al. A Block Variant of the GMRES Method on Massively Parallel Processors , 1997, Parallel Comput..
[36] Jason E. Hicken,et al. A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..
[37] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[38] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[39] Rudnei Dias da Cunha,et al. Dynamic block GMRES: an iterative method for block linear systems , 2007, Adv. Comput. Math..
[40] R. Morgan. Restarted block-GMRES with deflation of eigenvalues , 2005 .
[41] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[42] Y. Saad,et al. Preconditioning Helmholtz linear systems , 2010 .
[43] Edmond Chow,et al. Crout Versions of ILU for General Sparse Matrices , 2003, SIAM J. Sci. Comput..
[44] Henri Calandra,et al. Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..
[45] Ronald B. Morgan,et al. Restarting the Nonsymmetric Lanczos Algorithm for Eigenvalues and Linear Equations Including Multiple Right-Hand Sides , 2011, SIAM J. Sci. Comput..
[46] Ting-Zhu Huang,et al. The BiCOR and CORS Iterative Algorithms for Solving Nonsymmetric Linear Systems , 2011, SIAM J. Sci. Comput..
[47] R. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .