A new deflated block GCROT(m, k) method for the solution of linear systems with multiple right-hand sides

Linear systems with multiple right-hand sides arise in many applications. To solve such systems efficiently, a new deflated block GCROT( m , k ) method is explored in this paper by exploiting a modified block Arnoldi deflation. Incorporating this modified block Arnoldi deflation, the new algorithm can address the possible linear dependence at each iteration during the block Arnoldi procedure and reduces expensive computational operations. Moreover, as a block version of GCROT( m , k ), the new method inherits the property of easy operability. Finally, some numerical examples also illustrate the effectiveness of the proposed method.

[1]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[2]  P. Soudais Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies , 1994 .

[3]  Valeria Simoncini A Stabilized QMR Version of Block BiCG , 1997 .

[4]  Zhaojun Bai,et al.  The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..

[5]  Andy A. Nikishin,et al.  Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..

[6]  Simon Heybrock,et al.  A nested Krylov subspace method to compute the sign function of large complex matrices , 2009, Comput. Phys. Commun..

[7]  M. Sadkane,et al.  Exact and inexact breakdowns in the block GMRES method , 2006 .

[8]  M. Heyouni,et al.  The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides , 2001, Numerical Algorithms.

[9]  Na Li,et al.  Crout versions of ILU factorization with pivoting for sparse symmetric matrices. , 2005 .

[10]  Khalide Jbilou,et al.  The block Lanczos method for linear systems with multiple right-hand sides , 2004 .

[11]  H. Sadok,et al.  A block version of BiCGSTAB for linear systems with multiple right-hand sides. , 2003 .

[12]  Jing Meng,et al.  A block GCROT(m, k) method for linear systems with multiple right-hand sides , 2014, J. Comput. Appl. Math..

[13]  E. Jessup,et al.  AN EFFICIENT BLOCK VARIANT OF GMRES , 2022 .

[14]  E. Sturler,et al.  A Block Iterative Solver for Complex Non-Hermitian Systems Applied to Large-Scale, Electronic-Structure Calculations , 2002 .

[15]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[16]  Andreas Stathopoulos,et al.  Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..

[17]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[18]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[19]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[20]  Baojiang Zhong,et al.  Simpler block GMRES for nonsymmetric systems with multiple right-hand sides. , 2008 .

[21]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[22]  H. Sadok,et al.  OBLIQUE PROJECTION METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES , 2005 .

[23]  Lei Du,et al.  A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..

[24]  Tetsuya Sakurai,et al.  Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD , 2009, Comput. Phys. Commun..

[25]  Xian-Ming Gu,et al.  A deflated block flexible GMRES-DR method for linear systems with multiple right-hand sides , 2014 .

[26]  Faezeh Toutounian,et al.  The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides , 2006, Appl. Math. Comput..

[27]  R. Freund,et al.  A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .

[28]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[29]  B. Vital Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .

[30]  M. Heyouni,et al.  Matrix Krylov subspace methods for linear systems with multiple right-hand sides , 2005, Numerical Algorithms.

[31]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[32]  Henri Calandra,et al.  A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides , 2013, SIAM J. Sci. Comput..

[33]  V. Simoncini,et al.  Convergence properties of block GMRES and matrix polynomials , 1996 .

[34]  Eric L. Miller,et al.  QMR-Based Projection Techniques for the Solution of Non-Hermitian Systems with Multiple Right-Hand Sides , 2001, SIAM J. Sci. Comput..

[35]  Guangye Li,et al.  A Block Variant of the GMRES Method on Massively Parallel Processors , 1997, Parallel Comput..

[36]  Jason E. Hicken,et al.  A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..

[37]  M. Gutknecht BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .

[38]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[39]  Rudnei Dias da Cunha,et al.  Dynamic block GMRES: an iterative method for block linear systems , 2007, Adv. Comput. Math..

[40]  R. Morgan Restarted block-GMRES with deflation of eigenvalues , 2005 .

[41]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[42]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[43]  Edmond Chow,et al.  Crout Versions of ILU for General Sparse Matrices , 2003, SIAM J. Sci. Comput..

[44]  Henri Calandra,et al.  Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..

[45]  Ronald B. Morgan,et al.  Restarting the Nonsymmetric Lanczos Algorithm for Eigenvalues and Linear Equations Including Multiple Right-Hand Sides , 2011, SIAM J. Sci. Comput..

[46]  Ting-Zhu Huang,et al.  The BiCOR and CORS Iterative Algorithms for Solving Nonsymmetric Linear Systems , 2011, SIAM J. Sci. Comput..

[47]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .