An Algorithm for the Real Interval Eigenvalue Problem

6680 | October 2008 | 25 pagesAbstract: In this paper we present an algorithm for approximating the r angeof the real eigenvalues of interval matrices. Such matrices could be used tomodel real-life problems, where data sets su er from bounde d variations suchas uncertainties (e.g. tolerances on parameters, measurem ent errors), or tostudy problems for given states.The algorithm that we propose is a subdivision algorithm tha t exploits so-phisticated techniques from interval analysis. The qualit y of the computedapproximation, as well as the running time of the algorithm d epend on a giveninput accuracy. We also present an ecient C++ implementati on and illustrateits eciency on various data sets. In most of the cases we mana ge to computeeciently the exact boundary points (limited by oating poi nt representation).Key-words: Interval matrix, real eigenvalue, eigenvalue bounds, regu larity,interval analysis.

[1]  A. Dimarogonas Interval analysis of vibrating systems , 1995 .

[2]  A. S. Deif,et al.  On the invariance of the sign pattern of matrix eigenvectors under perturbation , 1994 .

[3]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[4]  A. Neumaier Interval methods for systems of equations , 1990 .

[5]  W. Karl,et al.  Comments on ‘ A necessary and sufficient condition for the stability of interval matrices ’† , 1984 .

[6]  J. Rohn,et al.  Solvability of systems of interval linear equations and inequalities , 2006 .

[7]  Jiri Rohn,et al.  On the range of eigenvalues of an interval matrix , 2006, Computing.

[8]  Peter C. Müller,et al.  An approximate method for the standard interval eigenvalue problem of real non‐symmetric interval matrices , 2001 .

[9]  Bernard Mourrain,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentation , 2008, Reliable Implementation of Real Number Algorithms.

[10]  G. William Walster,et al.  Sharp Bounds on Interval Polynomial Roots , 2002, Reliab. Comput..

[11]  Damien Chablat,et al.  An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines , 2007, ArXiv.

[12]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[13]  I. Emiris,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .

[14]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[15]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[16]  Jiri Rohn,et al.  Sufficient Conditions for Regularity and Singularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[17]  Bernard Mourrain,et al.  Resultant-Based Methods for Plane Curves Intersection Problems , 2005, CASC.

[18]  Christian Jansson,et al.  An Algorithm for Checking Regularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[19]  J. Rohn Interval matrices: singularity and real eigenvalues , 1993 .

[20]  A. Deif,et al.  The Interval Eigenvalue Problem , 1991 .

[21]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[22]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[23]  J. Rohn Bounds on Eigenvalues of Interval Matrices , 1998 .

[24]  G. Alefeld,et al.  Interval analysis: theory and applications , 2000 .

[25]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .