Hybrid Local Search Techniques for the Resource-Constrained Project Scheduling Problem

This paper proposes a local search algorithm that makes use of a complex neighborhood relation based on a hybridization with a constructive heuristics for the classical resource-constrained project scheduling problem (RCPSP). We perform an experimental analysis to tune the parameters of our algorithm and to compare it with a tabu search based on a combination of neighborhood relations borrowed from the literature. Finally, we show that our algorithm is also competitive with the ones reported in the literature.

[1]  V. Maniezzo,et al.  An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation , 1998 .

[2]  Michel Gendreau,et al.  A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows , 1998, Oper. Res..

[3]  Luca Di Gaspero,et al.  EASYLOCAL++: an object‐oriented framework for the flexible design of local‐search algorithms , 2003, Softw. Pract. Exp..

[4]  Christian Artigues,et al.  Insertion techniques for static and dynamic resource-constrained project scheduling , 2003, Eur. J. Oper. Res..

[5]  Janez Zerovnik,et al.  Best insertion algorithm for resource-constrained project scheduling problem , 2007, ArXiv.

[6]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[7]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[8]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[9]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[10]  Janez Brest,et al.  An Approximation Algorithm for the Asymmetric Traveling Salesman Problem , 1998 .

[11]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[12]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[13]  Gündüz Ulusoy,et al.  A survey on the resource-constrained project scheduling problem , 1995 .

[14]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[15]  Francisco Ballestín,et al.  Resource-constrained project scheduling: A critical activity reordering heuristic , 2003, Eur. J. Oper. Res..

[16]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[17]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[18]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[19]  Christian Artigues,et al.  LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search , 2004, Ann. Oper. Res..

[20]  Peter Brucker,et al.  A branch and bound algorithm for the resource-constrained project scheduling problem , 1998, Eur. J. Oper. Res..

[21]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[22]  P. Brucker,et al.  Tabu Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem , 1999 .