DNA methylation patterns suggest the involvement of DNMT3B and TET1 in osteosarcoma development

[1]  Martin J. Aryee,et al.  Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma , 2022, Communications Biology.

[2]  Xiaoming Liu,et al.  dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs , 2020, Genome Medicine.

[3]  Ning Jiang,et al.  DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer , 2020, Aging.

[4]  D. O. Vidal,et al.  Insights in Osteosarcoma by Proton Nuclear Magnetic Resonance Serum Metabonomics , 2020, Frontiers in Oncology.

[5]  M. Coleman,et al.  Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators , 2020, Biochemical Society transactions.

[6]  Areerak Phanphaisarn,et al.  Expression profiling of DNA methyl transferase I (DNMT1) and efficacy of a DNA-hypomethylating agent (decitabine) in combination with chemotherapy in osteosarcoma , 2020, Journal of bone oncology.

[7]  Christiane Medeiros Bezerra,et al.  Biology and pathogenesis of human osteosarcoma , 2019, Oncology letters.

[8]  T. Ushijima,et al.  Epigenetic reprogramming underlies efficacy of DNA demethylation therapy in osteosarcomas , 2019, Scientific Reports.

[9]  A. Cleton-Jansen,et al.  What’s new in bone forming tumours of the skeleton? , 2019, Virchows Archiv.

[10]  Matteo Cereda,et al.  Omic approaches to pediatric bone sarcomas , 2019, Pediatric blood & cancer.

[11]  Warren A. Cheung,et al.  H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis , 2019, Nature Communications.

[12]  Zachary D. Smith,et al.  Targets and genomic constraints of ectopic Dnmt3b expression , 2018, eLife.

[13]  Jing-hua Zhang,et al.  Combined analysis of DNA methylation and gene expression profiles of osteosarcoma identified several prognosis signatures. , 2018, Gene.

[14]  A. Kulidjian,et al.  Osteosarcoma: a comprehensive review , 2018, SICOT-J.

[15]  G. Pfeifer Defining Driver DNA Methylation Changes in Human Cancer , 2018, International journal of molecular sciences.

[16]  David T. W. Jones,et al.  Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information , 2018, Modern Pathology.

[17]  Y. Oike,et al.  TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma , 2018, Oncogene.

[18]  F. Pınarlı,et al.  Epigenetic silencing of the tumor suppressor genes SPI1, PRDX2, KLF4, DLEC1, and DAPK1 in childhood and adolescent lymphomas , 2018, Pediatric hematology and oncology.

[19]  James J. Morrow,et al.  Positively selected enhancer elements endow osteosarcoma cells with metastatic competence , 2017, Nature Medicine.

[20]  Fang Fang,et al.  Molecular genetics of osteosarcoma. , 2017, Bone.

[21]  Yuan Tian,et al.  ChAMP: updated methylation analysis pipeline for Illumina BeadChips , 2017, Bioinform..

[22]  Michael P. Schroeder,et al.  A DNA methylation map of human cancer at single base-pair resolution , 2017, Oncogene.

[23]  M. Ladanyi,et al.  DNA Methylation-Based Classifier for Accurate Molecular Diagnosis of Bone Sarcomas. , 2017, JCO precision oncology.

[24]  D. Y. Sunaga,et al.  Exomic variants of an elderly cohort of Brazilians in the ABraOM database , 2017, Human mutation.

[25]  Nathan C. Sheffield,et al.  DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma , 2017, Nature Medicine.

[26]  C. Scapulatempo-Neto,et al.  High Expression of HULC Is Associated with Poor Prognosis in Osteosarcoma Patients , 2016, PloS one.

[27]  Jyotika Varshney,et al.  Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma , 2016, Oncotarget.

[28]  P. Peltomäki,et al.  Methyltransferase expression and tumor suppressor gene methylation in sporadic and familial colorectal cancer , 2015, Genes, chromosomes & cancer.

[29]  G. Eckstein,et al.  Genomic Heterogeneity of Osteosarcoma - Shift from Single Candidates to Functional Modules , 2015, PloS one.

[30]  Paul Flicek,et al.  Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers , 2015, Genome research.

[31]  Peter L Molloy,et al.  De novo identification of differentially methylated regions in the human genome , 2015, Epigenetics & Chromatin.

[32]  Adam Kiezun,et al.  Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma , 2014, Proceedings of the National Academy of Sciences.

[33]  Winston Timp,et al.  Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors , 2014, Genome Medicine.

[34]  Andrew E. Teschendorff,et al.  ChAMP: 450k Chip Analysis Methylation Pipeline , 2014, Bioinform..

[35]  E. Andres Houseman,et al.  Reference-free cell mixture adjustments in analysis of DNA methylation data , 2014, Bioinform..

[36]  P. G. Rao,et al.  Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells , 2013, Molecular Cancer.

[37]  A. Gnirke,et al.  Charting a dynamic DNA methylation landscape of the human genome , 2013, Nature.

[38]  A. Petrilli,et al.  Aberrant DNA methylation of ESR1 and p14ARF genes could be useful as prognostic indicators in osteosarcoma , 2013, OncoTargets and therapy.

[39]  Michael J. Ziller,et al.  Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells , 2013, Cell.

[40]  Xiumin Wang,et al.  Hic1 Modulates Prostate Cancer Progression by Epigenetic Modification No Potential Conflicts of Interest Were Disclosed Statement of Translational Relevance , 2022 .

[41]  F. Setién,et al.  DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. , 2012, The American journal of pathology.

[42]  Francesco Marabita,et al.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data , 2012, Bioinform..

[43]  Eivind Hovig,et al.  Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma , 2012, PloS one.

[44]  Anne-Marie Cleton-Jansen,et al.  Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data , 2012, Genes, chromosomes & cancer.

[45]  Murat Sincan,et al.  Detecting false‐positive signals in exome sequencing , 2012, Human mutation.

[46]  A. Shiras,et al.  Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas , 2011, Journal of Neuro-Oncology.

[47]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[48]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[49]  C. Bloomfield,et al.  MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. , 2009, Blood.

[50]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[51]  Jun Yu,et al.  DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers , 2009, British Journal of Cancer.

[52]  L. Horvath,et al.  DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma , 2008, British Journal of Cancer.

[53]  N. Andreollo,et al.  Lower expression of p14ARF and p16INK4a correlates with higher DNMT3B expression in human oesophageal squamous cell carcinomas , 2006, Human & experimental toxicology.

[54]  J. Squire,et al.  Chromosome 6p amplification and cancer progression , 2006, Journal of Clinical Pathology.

[55]  Zuhong Lu,et al.  Quantitative analysis of promoter hypermethylation in multiple genes in osteosarcoma , 2006, Cancer.

[56]  Hyung‐Ho Kim,et al.  Aberrant Methylation of p14ARF Gene Correlates with Poor Survival in Osteosarcoma , 2006, Clinical orthopaedics and related research.

[57]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Bernardini,et al.  Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. , 2004, Cancer genetics and cytogenetics.

[59]  Shishir Shah,et al.  Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma , 2004, BMC Cancer.

[60]  M. Robert,et al.  An Essential Role for DNA Methyltransferase DNMT3B in Cancer Cell Survival* , 2002, The Journal of Biological Chemistry.

[61]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[62]  James J. Morrow,et al.  Osteosarcoma Genetics and Epigenetics: Emerging Biology and Candidate Therapies. , 2015, Critical reviews in oncogenesis.

[63]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[64]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[65]  J. Squire,et al.  Chromosome 6 p amplification and cancer progression Gda , 2006 .