Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and temperature dependence, fatigue and tribological properties. The highlighted examples include recent experimental studies in obtaining both high strength and considerable ductility, the compromise between enhanced fatigue limit and reduced crack growth resistance, the stress-assisted dynamic grain growth during deformation, and the relation between rate sensitivity and possible deformation mechanisms. The recent advances in obtaining quantitative and mechanics-based models, developed in line with the related transmission electron microscopy and relevant molecular dynamics observations, are discussed with particular attention to mechanistic models of partial/perfect-dislocation or deformation-twin-mediated deformation processes interacting with grain boundaries, constitutive modeling and simulations of grain size distribution and dynamic grain growth, and physically motivated crystal plasticity modeling of pure Cu with nanoscale growth twins. Sustained research efforts have established a group of nanocrystalline and nanostructured metals that exhibit a combination of high strength and considerable ductility in tension. Accompanying the gradually deepening understanding of the deformation mechanisms and their relative importance, quantitative and mechanisms-based constitutive models that can realistically capture experimentally measured and grain-size-dependent stress–strain behavior, strain-rate sensitivity and even ductility limit are becoming available. Some outstanding issues and future opportunities are listed and discussed.

[1]  E. Ma,et al.  Instabilities and ductility of nanocrystalline and ultrafine-grained metals , 2003 .

[2]  Subra Suresh,et al.  Fatigue crack deflection and fracture surface contact: Micromechanical models , 1985 .

[3]  R. Scattergood,et al.  Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature , 2002 .

[4]  Yinmin M Wang,et al.  Temperature and strain rate effects on the strength and ductility of nanostructured copper , 2003 .

[5]  Y. D. Wang,et al.  Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation , 2006 .

[6]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[7]  B. Schmitt,et al.  Temperature-dependent residual broadening of x-ray diffraction spectra in nanocrystalline plasticity , 2005 .

[8]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[9]  D Farkas,et al.  Atomistic mechanisms of fatigue in nanocrystalline metals. , 2005, Physical review letters.

[10]  Johannes Weertman,et al.  In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films , 2003 .

[11]  T. Nieh,et al.  The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni , 2003 .

[12]  Ibrahim Karaman,et al.  Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion , 2004 .

[13]  Á. Cziráki,et al.  Microstructure and growth of electrodeposited nanocrystalline nickel foils , 1994, Journal of Materials Science.

[14]  S. Suresh,et al.  Strength, strain-rate sensitivity and ductility of copper with nanoscale twins , 2006 .

[15]  J. Molinari,et al.  Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper , 2004 .

[16]  Terence G. Langdon,et al.  The fundamentals of nanostructured materials processed by severe plastic deformation , 2004 .

[17]  C. Koch,et al.  Nanostructured Materials: Processing Properties, and Potential Applications , 2002 .

[18]  P. Krysl,et al.  Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals , 2005 .

[19]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[20]  S. Suresh,et al.  Strain rate sensitivity of Cu with nanoscale twins , 2006 .

[21]  S. G. Srinivasan,et al.  Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation , 2005 .

[22]  J. Cahn,et al.  Thermal activation under shear , 2001 .

[23]  Philippe Spätig,et al.  Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel , 2005 .

[24]  T. Vystavěl,et al.  Nanosized metal clusters: Challenges and opportunities , 2004 .

[25]  P. Liaw,et al.  Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process , 2005 .

[26]  F. Ebrahimi,et al.  Deformation and fracture of electrodeposited copper , 1998 .

[27]  Evan Ma,et al.  Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys , 2006 .

[28]  H. Van Swygenhoven,et al.  Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation , 2003, Science.

[29]  G. Taylor Thermally-activated deformation of BCC metals and alloys , 1992 .

[30]  Andrey A. Voevodin,et al.  Supertough wear-resistant coatings with ‘chameleon’ surface adaptation , 2000 .

[31]  Peter M. Derlet,et al.  Atomistic simulations as guidance to experiments , 2003 .

[32]  Xiaolei Wu,et al.  Dislocations in nanocrystalline grains , 2006 .

[33]  P. Krysl,et al.  Deformation mechanism transitions in nanoscale fcc metals , 2003 .

[34]  Ronald O. Scattergood,et al.  Ultrahigh strength and high ductility of bulk nanocrystalline copper , 2005 .

[35]  T. Vystavěl,et al.  In situ transmission electron microscopy studies on structural dynamics of transition metal nanoclusters , 2005 .

[36]  Yinmin M Wang,et al.  Three strategies to achieve uniform tensile deformation in a nanostructured metal , 2004 .

[37]  Jean-François Molinari,et al.  Atomistic based continuum investigation of plastic deformation in nanocrystalline copper , 2006 .

[38]  G. J. Fan,et al.  Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation , 2006 .

[39]  R. Hempelmann,et al.  Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability , 1998 .

[40]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[41]  Hongsheng Gao,et al.  High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni , 2006 .

[42]  T. Nieh,et al.  Recent advances in superplastic ceramics and ceramic composites , 1991 .

[43]  R. Scattergood,et al.  Ultratough nanocrystalline copper with a narrow grain size distribution , 2004 .

[44]  J. F. Devlin,et al.  Microstructural analysis and tensile properties of thick copper and nickel sputter deposits , 1977 .

[45]  S. Suresh,et al.  Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals , 2003 .

[46]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[47]  I. Ovid’ko,et al.  Grain boundary migration as rotational deformation mode in nanocrystalline materials , 2005 .

[48]  Jian Lu,et al.  An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment , 2002 .

[49]  H. V. Swygenhoven,et al.  Nucleation and propagation of dislocations in nanocrystalline fcc metals , 2006 .

[50]  Y. Champion,et al.  Near-Perfect Elastoplasticity in Pure Nanocrystalline Copper , 2003, Science.

[51]  B. Décamps,et al.  On the interactions between dislocations and a near-Σ=3 grain boundary in a low stacking-fault energy metal , 2003 .

[52]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[53]  S. Agnew,et al.  Microstructure and mechanical behavior of nanocrystalline metals , 2000 .

[54]  E. Ma Watching the Nanograins Roll , 2004, Science.

[55]  G. Chin,et al.  Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals , 1973 .

[56]  H. V. Swygenhoven,et al.  PLASTIC BEHAVIOR OF NANOPHASE METALS STUDIED BY MOLECULAR DYNAMICS , 1998 .

[57]  Evan Ma,et al.  Tensile properties of in situ consolidated nanocrystalline Cu , 2005 .

[58]  W. W. Milligan,et al.  Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals , 2003 .

[59]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[60]  T. Vystavěl,et al.  Nanosized iron clusters investigated with in situ transmission electron microscopy , 2003 .

[61]  K. T. Ramesh,et al.  Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation , 2004 .

[62]  Jean-François Molinari,et al.  Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study , 2005 .

[63]  Andrew M. Minor,et al.  Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature , 2004 .

[64]  K. Lu Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties , 1996 .

[65]  Yinmin M Wang,et al.  Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper , 2004 .

[66]  A. Hamza,et al.  Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni , 2006 .

[67]  J. Weertman,et al.  Overview of fatigue performance of Cu processed by severe plastic deformation , 1999 .

[68]  A. S. Argon,et al.  The strongest size , 2006 .

[69]  Paul G. Sanders,et al.  Elastic and tensile behavior of nanocrystalline copper and palladium , 1997 .

[70]  Xiaolei Wu,et al.  Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni , 2006 .

[71]  J. Hosson,et al.  Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films , 2004 .

[72]  R. Scattergood,et al.  Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn , 2002 .

[73]  Subra Suresh,et al.  Nano-sized twins induce high rate sensitivity of flow stress in pure copper , 2005 .

[74]  Evan Ma,et al.  Strain hardening, strain rate sensitivity, and ductility of nanostructured metals , 2004 .

[75]  D. He,et al.  Deformation twins in nanocrystalline Al , 2003 .

[76]  W. Johnson Bulk Glass-Forming Metallic Alloys: Science and Technology , 1999 .

[77]  S. Suresh,et al.  Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins , 2005 .

[78]  J. Markmann,et al.  Deformation twinning in nanocrystalline Pd , 2004 .

[79]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[80]  Subra Suresh,et al.  Grain size effects on the fatigue response of nanocrystalline metals , 2003 .

[81]  Hongqi Li,et al.  Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals , 2004 .

[82]  Subra Suresh,et al.  The frictional sliding response of elasto-plastic materials in contact with a conical indenter , 2007 .

[83]  A. Matthews,et al.  Design criteria for wear-resistant nanostructured and glassy-metal coatings , 2004 .

[84]  Yuntian Zhu,et al.  Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries , 2006 .

[85]  Alfredo Caro,et al.  Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale : A molecular dynamics study , 2001 .

[86]  T. Nieh,et al.  Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel , 2002 .

[87]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[88]  S. G. Srinivasan,et al.  Deformation twinning in nanocrystalline copper at room temperature and low strain rate , 2004 .

[89]  P. N. Gibson,et al.  Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings , 2005 .

[90]  U. Erb,et al.  Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating , 1995 .

[91]  M. Evans Statistical Distributions , 2000 .

[92]  J. Hosson,et al.  Nanostructure and properties of TiC/a-C: H composite coatings , 2005 .

[93]  W. Meng,et al.  Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings , 1998 .

[94]  C. Koch Optimization of strength and ductility in nanocrystalline and ultrafine grained metals , 2003 .

[95]  Kai Zhang,et al.  The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper , 2004 .

[96]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[97]  J. Weertman,et al.  Microsample tensile testing of nanocrystalline metals , 2000 .

[98]  T. Nieh,et al.  Deformation twinning during nanoindentation of nanocrystalline Ta , 2005 .

[99]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[100]  K. T. Ramesh,et al.  Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron , 2003 .

[101]  William E. Buhro,et al.  Plastic deformation of nanocrystalline Cu and Cu–0.2 wt.% B , 1999 .

[102]  Hellmut Haberland,et al.  Thin films from energetic cluster impact: A feasibility study , 1992 .

[103]  Yinmin M Wang,et al.  On the origin of ultrahigh cryogenic strength of nanocrystalline metals , 2004 .

[104]  K. Lu,et al.  Hardness and strain rate sensitivity of nanocrystalline Cu , 2006 .

[105]  U. Erb,et al.  Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition , 1995, Journal of Materials Science.

[106]  B. Schmitt,et al.  Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel , 2004, Science.

[107]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[108]  G. R. Bourne,et al.  Mechanical properties of nanocrystalline nickel produced by electrodeposition , 1999 .

[109]  T. Malis,et al.  Grain boundaries as dislocation sources in the premacroyield strain region , 1979 .

[110]  S. G. Srinivasan,et al.  Nucleation and growth of deformation twins in nanocrystalline aluminum , 2004 .

[111]  R. A. Mirshams,et al.  Creep behavior of nanocrystalline nickel at 290 and 373 K , 2001 .

[112]  Ilya A. Ovid'ko,et al.  Plastic Deformation in Nanocrystalline Materials , 2004 .

[113]  D. Follstaedt,et al.  Hall–Petch relationship in pulsed-laser deposited nickel films , 2004 .

[114]  W. Johnson,et al.  Nanocrystalline metals prepared by high-energy ball milling , 1990 .

[115]  Lu,et al.  Superplastic extensibility of nanocrystalline copper at room temperature , 2000, Science.

[116]  Jian Lu,et al.  Plastic strain-induced grain refinement at the nanometer scale in copper , 2006 .

[117]  F. Ebrahimi,et al.  The effect of substrate on the microstructure and tensile properties of electrodeposited nanocrystalline nickel , 2002 .

[118]  S. Suresh,et al.  Fatigue behavior of nanocrystalline metals and alloys , 2005 .

[119]  H. Conrad,et al.  Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures , 2002 .

[120]  Evan Ma,et al.  Microsample tensile testing of nanocrystalline copper , 2003 .

[121]  Subra Suresh,et al.  Deformation of electrodeposited nanocrystalline nickel , 2003 .

[122]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[123]  Lallit Anand,et al.  A computational study of the mechanical behavior of nanocrystalline fcc metals , 2006 .

[124]  Jagdish Narayan,et al.  On the grain size softening in nanocrystalline materials , 2000 .

[125]  Subra Suresh,et al.  Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel , 2003 .

[126]  T. Nelson,et al.  A new route to bulk nanocrystalline materials , 2003 .

[127]  K. Lu,et al.  An abnormal strain rate effect on tensile behavior in nanocrystalline copper , 2001 .

[128]  J. Rice Localization of plastic deformation , 1976 .

[129]  K. Lu,et al.  Tensile properties of copper with nano-scale twins , 2005 .

[130]  C. Schuh,et al.  Tailoring and patterning the grain size of nanocrystalline alloys , 2007 .

[131]  J. Hosson,et al.  Interaction between lattice dislocations and grain boundaries in f.c.c. and ordered compounds: A computer simulation , 1991 .

[132]  W. Meng,et al.  Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings , 2000 .

[133]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[134]  D. G. Morris,et al.  Ductility of Nanostructured Materials , 1999 .

[135]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[136]  Marc Legros,et al.  Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films , 2006 .

[137]  S. Nutt,et al.  Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5Mg alloy , 2005 .

[138]  D. Butt,et al.  Microstructural evolution, microhardness and thermal stability of HPT-processed Cu , 2000 .

[139]  G. Palumbo,et al.  High strength nanocrystalline cobalt with high tensile ductility , 2003 .

[140]  Jeffrey Wadsworth,et al.  Superplasticity—Recent advances and future directions , 1989 .

[141]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[142]  Á. Cziráki,et al.  Preparation and characterization of d.c.-plated nanocrystalline nickel electrodeposits , 1996 .

[143]  Horst Hahn,et al.  The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals , 2006 .

[144]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[145]  J. Hosson,et al.  TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C:H nanocomposite coatings , 2005 .

[146]  S. Suresh Fatigue of materials , 1991 .

[147]  J. Patscheider,et al.  Structure-performance relations in nanocomposite coatings , 2001 .

[148]  P. Krysl,et al.  Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II , 2006 .

[149]  J. Weertman,et al.  Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures , 2005 .

[150]  Jian Lu,et al.  Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment , 2006 .

[151]  M. Victoria,et al.  Nanocrystalline electrodeposited Ni: microstructure and tensile properties , 2002 .

[152]  H. V. Swygenhoven,et al.  Internal and effective stresses in nanocrystalline electrodeposited Ni , 2006 .

[153]  Y. Bai,et al.  Synthesis and Tensile Property of Nanocrystalline Metal Copper , 1999 .

[154]  J. Weertman,et al.  Deformation behavior in nanocrystalline copper , 2001 .

[155]  H. Conrad Grain size dependence of the plastic deformation kinetics in Cu , 2003 .

[156]  S. Vepřek The search for novel, superhard materials , 1999 .

[157]  Maria Dolors Baró,et al.  Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion , 2003 .