Establishing an accurate and sensitive in vitro drug screening system for human adenovirus infection with human corneal cells.

[1]  T. Fujimoto,et al.  Sensitivity of Human Mastadenovirus, the Causal Agent of Pharyngoconjunctival Fever, Epidemic Keratoconjunctivitis, and Hemorrhagic Cystitis in Immunocompromised Individuals, to Brincidofovir , 2022, Microbiology spectrum.

[2]  E. Kodama,et al.  Antiviral Activity and Resistance Profile of the Novel HIV-1 Non-Catalytic Site Integrase Inhibitor JTP-0157602 , 2022, Journal of virology.

[3]  Y. Eom,et al.  Comparison of cytotoxicity effects induced by four different types of nanoparticles in human corneal and conjunctival epithelial cells , 2022, Scientific reports.

[4]  J. Mymryk,et al.  Emerging Antiviral Therapeutics for Human Adenovirus Infection: Recent Developments and Novel Strategies. , 2021, Antiviral research.

[5]  E. Kodama,et al.  Application of human lymphoid cells for the evaluation of antivirals against human adenovirus type 19: Zalcitabine has superior activity compared to cidofovir , 2020, Antiviral chemistry & chemotherapy.

[6]  A. Karimi,et al.  In vitro anti-adenoviral activities of ethanol extract, fractions, and main phenolic compounds of pomegranate (Punica granatum L.) peel , 2020, Antiviral chemistry & chemotherapy.

[7]  Aaron Y. Lee,et al.  Determinants of Outcomes of Adenoviral Keratoconjunctivitis. , 2018, Ophthalmology.

[8]  J. Kurtzberg,et al.  Brincidofovir for Asymptomatic Adenovirus Viremia in Pediatric and Adult Allogeneic Hematopoietic Cell Transplant Recipients: A Randomized Placebo-Controlled Phase II Trial. , 2017, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[9]  R. Lundmark,et al.  Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells , 2016, Journal of Virology.

[10]  M. Hashimoto,et al.  Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides. , 2015, Nature chemistry.

[11]  Ruhi V. Ubale,et al.  Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. , 2015, Journal of pharmaceutical sciences.

[12]  B. Ghebremedhin Human adenovirus: Viral pathogen with increasing importance. , 2014, European journal of microbiology & immunology.

[13]  K. Kadonosono,et al.  Antiadenoviral effects of ganciclovir in types inducing keratoconjunctivitis by quantitative polymerase chain reaction methods , 2014, Clinical ophthalmology.

[14]  Lei Shang,et al.  Anti-adenovirus activities of shikonin, a component of Chinese herbal medicine in vitro. , 2011, Biological & pharmaceutical bulletin.

[15]  S. Sarafianos,et al.  Resistance Profiles of Novel Electrostatically Constrained HIV-1 Fusion Inhibitors* , 2010, The Journal of Biological Chemistry.

[16]  E. Romanowski,et al.  The in vitro and in vivo evaluation of ddC as a topical antiviral for ocular adenovirus infections. , 2009, Investigative ophthalmology & visual science.

[17]  S. Sarafianos,et al.  Clinical relevance of substitutions in the connection subdomain and RNase H domain of HIV-1 reverse transcriptase from a cohort of antiretroviral treatment-naïve patients. , 2009, Antiviral Research.

[18]  Shinya Oishi,et al.  Synonymous mutations in stem-loop III of Rev responsive elements enhance HIV-1 replication impaired by primary mutations for resistance to enfuvirtide. , 2009, Antiviral research.

[19]  E. De Clercq,et al.  Clinical features and treatment of adenovirus infections , 2008, Reviews in medical virology.

[20]  J. Ge,et al.  Establishment of a corneal epithelial cell line spontaneously derived from human limbal cells. , 2007, Experimental eye research.

[21]  S. Ohno,et al.  Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[22]  J. Chodosh,et al.  Adenoviral Keratoconjunctivitis in a Tertiary Care Eye Clinic , 2006, Cornea.

[23]  E. De Clercq,et al.  Mouse Adenovirus Type 1 Infection in SCID Mice: an Experimental Model for Antiviral Therapy of Systemic Adenovirus Infections , 2005, Antimicrobial Agents and Chemotherapy.

[24]  E. De Clercq,et al.  Antiadenovirus Activities of Several Classes of Nucleoside and Nucleotide Analogues , 2005, Antimicrobial Agents and Chemotherapy.

[25]  Kortney M. Gustin,et al.  Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: activity against adenovirus replication in vitro. , 2005, The Journal of infectious diseases.

[26]  M. Matsuoka,et al.  4′-Ethynyl Nucleoside Analogs: Potent Inhibitors of Multidrug-Resistant Human Immunodeficiency Virus Variants In Vitro , 2001, Antimicrobial Agents and Chemotherapy.

[27]  S. Shigeta,et al.  [Evaluation of antiviral agents for adenovirus using the MTT method in vitro]. , 2001, Nippon Ganka Gakkai zasshi.

[28]  M. Kinder,et al.  Inhibitory activity of 3'-fluoro-2' deoxythymidine and related nucleoside analogues against adenoviruses in vitro. , 1997, Antiviral research.

[29]  E. De Clercq,et al.  Application of a gastric cancer cell line (MKN-28) for anti-adenovirus screening using the MTT method. , 1996, Antiviral research.

[30]  J. Chodosh,et al.  Adenovirus Epithelial Keratitis , 1995, Cornea.

[31]  M. Emerman,et al.  Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene , 1992, Journal of virology.

[32]  E. De Clercq,et al.  Inhibitory effect of (S)-HPMPC, (S)-HPMPA, and 2'-nor-cyclic GMP on clinical ocular adenoviral isolates is serotype-dependent in vitro. , 1991, Antiviral research.

[33]  K. Nelson,et al.  Epidemiology of epidemic keratoconjunctivitis. , 1987, Epidemiologic reviews.