Structural interactions in spatial panels

Until recently, considerable effort has been devoted to the estimation of panel data regression models without adequate attention being paid to the drivers of interaction amongst cross-section and spatial units. We discuss some new methodologies in this emerging area and demonstrate their use in measurement and inferences on cross-section and spatial interactions. Specifically, we highlight the important distinction between spatial dependence driven by unobserved common factors and those based on a spatial weights matrix. We argue that purely factor-driven models of spatial dependence may be inadequate because of their connection with the exchangeability assumption. The three methods considered are appropriate for different asymptotic settings; estimation under structural constraints when N is fixed and T → ∞, whilst the methods based on GMM and common correlated effects are appropriate when T ≫ N → ∞. Limitations and potential enhancements of the existing methods are discussed, and several directions for new research are highlighted.

[1]  Timothy G. Conley GMM estimation with cross sectional dependence , 1999 .

[2]  Charles I. Jones,et al.  Convergence Revisited , 1996 .

[3]  Elisa Tosetti,et al.  Large Panels with Common Factors and Spatial Correlations , 2007, SSRN Electronic Journal.

[4]  Harry H. Kelejian,et al.  HAC estimation in a spatial framework , 2007 .

[5]  W. Newey,et al.  A method of moments interpretation of sequential estimators , 1984 .

[6]  B. Baltagi,et al.  A Generalized Spatial Panel Data Model with Random Effects , 2009, SSRN Electronic Journal.

[7]  Camille Roth,et al.  Connections: An Introduction to the Economics of Networks by Sanjeev Goyal , 2010, J. Artif. Soc. Soc. Simul..

[8]  Sean Holly,et al.  Taking Personalities Out of Monetary Policy Decision Making? Interactions, Heterogeneity and Committee Decisions in the Bank of England's MPC , 2006 .

[9]  C. Granger,et al.  Aggregation of Space-Time Processes , 2001 .

[10]  Raúl Ramos Lobo Advances in Spatial Econometrics. Methodology, Tools and Applications. Luc Anselin, Raymond J.G.M. Florax y Sergio J. Rey (eds.) [Ressenya de llibre] , 2005 .

[11]  J. Banks,et al.  Information Aggregation, Rationality, and the Condorcet Jury Theorem , 1996, American Political Science Review.

[12]  Marco Lippi,et al.  The generalized dynamic factor model: consistency and rates , 2004 .

[13]  Harry H. Kelejian,et al.  A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model , 1999 .

[14]  Sean Holly,et al.  Rational Partisan Theory, Uncertainty, and Spatial Voting: Evidence for the Bank of England's MPC , 2009 .

[15]  Takeshi Amemiya,et al.  Regression Analysis when the Dependent Variable is Truncated Normal , 1973 .

[16]  Timothy G. Conley,et al.  Technical Appendix for: Spatial Correlation Robust Inference with Errors in Location or Distance , 2005 .

[17]  Sergio J. Rey,et al.  Advances in Spatial Econometrics , 2004 .

[18]  Jushan Bai Likelihood approach to small T dynamic panel models with interactive eects , 2009 .

[19]  Bernard Fingleton,et al.  Externalities, Economic Geography, And Spatial Econometrics: Conceptual And Modeling Developments , 2003 .

[20]  M. Arellano,et al.  Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations , 1991 .

[21]  Timothy G. Conley,et al.  Identification of local interaction models with imperfect location data , 2003 .

[22]  Ronald Smith,et al.  A Principal Components Approach to Cross-Section Dependence in Panels , 2002 .

[23]  B. Fingleton A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices , 2006 .

[24]  Sean Holly,et al.  Understanding Interactions in Social Networks and Committees , 2013 .

[25]  Harry H. Kelejian,et al.  Estimation of simultaneous systems of spatially interrelated cross sectional equations , 2004 .

[26]  M. Pesaran,et al.  Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model , 2004 .

[27]  Sergio J. Rey,et al.  US Regional Income Convergence: A Spatial Econometric Perspective , 1999 .

[28]  Athanasios Orphanides Historical monetary policy analysis and the Taylor rule , 2003 .

[29]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[30]  Sergio J. Rey,et al.  Advances in Spatial Econometrics: Methodology, Tools and Applications , 2004 .

[31]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[32]  L. J. Savage,et al.  Symmetric measures on Cartesian products , 1955 .

[33]  Lars E. O. Svensson In‡ation Forecast Targeting: Implementing and Monitoring In‡ation Targets , 1996 .

[34]  Sanjeev Goyal,et al.  Strong and Weak Links , 2005 .

[35]  D. Andrews,et al.  Cross-Section Regression with Common Shocks , 2003 .

[36]  Mervyn King The Monetary Policy Committee: Five Years on , 2002 .

[37]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[38]  Bernard Fortin,et al.  Identification of Peer Effects through Social Networks , 2007, SSRN Electronic Journal.

[39]  E. Britton,et al.  The Inflation Report projections: understanding the fan chart , 1997 .

[40]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[41]  Athanasios Orphanides Monetary policy evaluation with noisy information , 2003 .

[42]  Arnab Bhattacharjee,et al.  Evaluating Economic Theories of Growth and Inequality: A Study of the Danish Economy , 2007 .

[43]  Kosuke Aoki,et al.  On the optimal monetary policy response to noisy indicators , 2003 .

[44]  Joris Pinkse,et al.  Spatial Price Competition: A Semiparametric Approach , 2002 .

[45]  Timothy G. Conley,et al.  Socio-economic Distance and Spatial Patterns in Unemployment Journal of Applied Econometrics 17 , 2002 .

[46]  O. Issing,et al.  monetary policy in a world of uncertainty , 2002 .

[47]  Harold Gulliksen,et al.  Methods for determining equivalence of measures. , 1968 .

[48]  Badi H. Baltagi,et al.  A companion to theoretical econometrics , 2003 .

[49]  Catherine Baumont,et al.  The European Regional Convergence Process, 1980-1995: Do Spatial Regimes and Spatial Dependence Matter? , 2006 .

[50]  M. Pesaran General diagnostic tests for cross-sectional dependence in panels , 2004, Empirical Economics.

[51]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[52]  Richard Blundell,et al.  An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply , 1986 .

[53]  Arnab Bhattacharjee,et al.  Estimation of spatial weights matrix in a spatial error model, with an application to diffusion in housing demand , 2005 .

[54]  Lung-fei Lee,et al.  Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models , 2004 .

[55]  J. LeSage Introduction to spatial econometrics , 2009 .

[56]  M. Pesaran,et al.  Modeling Regional Interdependencies Using a Global Error-correcting Macroeconometric Model Federal Reserve Bank of New York , 2001 .

[57]  Henk Kelderman,et al.  Measurement exchangeability and normal one-factor models , 2004 .

[58]  R. Blundell,et al.  Initial Conditions and Moment Restrictions in Dynamic Panel Data Models , 1998 .

[59]  Petra Gerlach-Kristen,et al.  Is the Mpc's Voting Record Informative About Future UK Monetary Policy? , 2004 .

[60]  Sergio J. Rey,et al.  Econometrics for Spatial Models: Recent Advances , 2004 .

[61]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[62]  B. D. Finetti,et al.  Foresight: Its Logical Laws, Its Subjective Sources , 1992 .

[63]  J. LeSage Spatial Econometrics , 1998 .

[64]  Robert I. Jennrich,et al.  A simple general procedure for orthogonal rotation , 2001 .

[65]  Badi H. Baltagi,et al.  A Monte Carlo Study for Pure and Pretest Estimators of a Panel Data Model with Spatially Autocorrelated Disturbances , 2007 .

[66]  Mudit Kapoor,et al.  Panel data models with spatially correlated error components , 2007 .

[67]  Sean Holly,et al.  A Spatio-Temporal Model of House Prices in the Us , 2006 .

[68]  Luc Anselin,et al.  Under the hood , 2002 .

[69]  M. Jackson,et al.  Networks and groups : models of strategic formation , 2003 .

[70]  M. Pesaran Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure , 2004, SSRN Electronic Journal.

[71]  S. Machin,et al.  Valuing rail access using transport innovations , 2004 .