Thick Electrode Batteries: Principles, Opportunities, and Challenges

[1]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[2]  C. Wen,et al.  A review of high energy density lithium–air battery technology , 2013, Journal of Applied Electrochemistry.

[3]  Qinglin Wu,et al.  Hetero‐Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability , 2015 .

[4]  Feng Li,et al.  Charge delivery goes the distance , 2017, Science.

[5]  Kun Fu,et al.  All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture , 2018, Energy Storage Materials.

[6]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[7]  Jun Ma,et al.  All solid-state polymer electrolytes for high-performance lithium ion batteries , 2016 .

[8]  Hongli Zhu,et al.  3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose , 2019, Advanced materials.

[9]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[10]  Liangbing Hu,et al.  A High‐Performance Self‐Regenerating Solar Evaporator for Continuous Water Desalination , 2019, Advanced materials.

[11]  G. Wallace,et al.  Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries , 2009 .

[12]  J. Connell,et al.  Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode. , 2017, Angewandte Chemie.

[13]  Rodney S. Ruoff,et al.  Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. , 2012, Nano letters.

[14]  Qinglin Wu,et al.  Heterolayered, one-dimensional nanobuilding block mat batteries. , 2014, Nano letters.

[15]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[16]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[17]  Zongfu Yu,et al.  Tree‐Inspired Design for High‐Efficiency Water Extraction , 2017, Advanced materials.

[18]  K. Loh,et al.  Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes , 2019, Advanced materials.

[19]  Liangbing Hu,et al.  Bioinspired Solar‐Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil , 2019, Advanced Functional Materials.

[20]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[21]  J. Yin,et al.  Nanostructured CuO directly grown on copper foam and their supercapacitance performance , 2012 .

[22]  Jian Li,et al.  Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. , 2018, Chemical Society reviews.

[23]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[24]  Liangbing Hu,et al.  Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. , 2017, Nano letters.

[25]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[26]  M. Winter,et al.  Natural cellulose as binder for lithium battery electrodes , 2012 .

[27]  Liangbing Hu,et al.  Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. , 2018, Accounts of chemical research.

[28]  Yury Gogotsi,et al.  Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes , 2018, Nature.

[29]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[30]  Xu Xu,et al.  Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage , 2017, Science.

[31]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[32]  David G. Kwabi,et al.  Materials challenges in rechargeable lithium-air batteries , 2014 .

[33]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[34]  Qiwei Pan,et al.  Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries , 2015, Advanced materials.

[35]  Kun Fu,et al.  Stabilizing the Garnet Solid-Electrolyte/Polysulfide Interface in Li–S Batteries , 2017 .

[36]  P. Moreau,et al.  Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors , 2014 .

[37]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[38]  Liangbing Hu,et al.  Highly Flexible and Efficient Solar Steam Generation Device , 2017, Advanced materials.

[39]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[40]  D. J. Lee,et al.  Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode , 2016, Advanced materials.

[41]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[42]  Kai Xi,et al.  Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. , 2014, Nanoscale.

[43]  Liangbing Hu,et al.  3D‐Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li‐CO2 Batteries , 2018, Advanced Functional Materials.

[44]  Maher F. El-Kady,et al.  Graphene for batteries, supercapacitors and beyond , 2016 .

[45]  Boyang Liu,et al.  3D Wettable Framework for Dendrite‐Free Alkali Metal Anodes , 2018 .

[46]  Yi Cui,et al.  Wood‐Inspired High‐Performance Ultrathick Bulk Battery Electrodes , 2018, Advanced materials.

[47]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[48]  X. Duan,et al.  Hierarchical 3D electrodes for electrochemical energy storage , 2018, Nature Reviews Materials.

[49]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[50]  Jun Lu,et al.  Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O2 Batteries: Recent Progress and Perspective , 2018, Advanced Energy Materials.

[51]  Steven D. Lacey,et al.  Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways , 2018, Advanced materials.

[52]  J. Connell,et al.  Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li–O2 Batteries , 2016 .

[53]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[54]  Chengwei Wang,et al.  Interface Engineering for Garnet‐Based Solid‐State Lithium‐Metal Batteries: Materials, Structures, and Characterization , 2018, Advanced materials.

[55]  J. Connell,et al.  Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life. , 2015, Small.

[56]  E. J. Foster,et al.  NIST-TAPPI Workshop on Measurement Needs for Cellulose Nanomaterial , 2015 .

[57]  Fei Liu,et al.  Folded Structured Graphene Paper for High Performance Electrode Materials , 2012, Advanced materials.

[58]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[59]  Yu Huang,et al.  Holey graphene frameworks for highly efficient capacitive energy storage , 2014, Nature Communications.

[60]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[61]  Hugh Alan Bruck,et al.  Processing bulk natural wood into a high-performance structural material , 2018, Nature.

[62]  P. Ma,et al.  Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes , 2007 .

[63]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[64]  Dan Sun,et al.  A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air , 2013 .

[65]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[66]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[67]  J. Lewis,et al.  3D Printing of Customized Li‐Ion Batteries with Thick Electrodes , 2018, Advanced materials.

[68]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[69]  Tian Li,et al.  Graphene Oxide‐Based Electrode Inks for 3D‐Printed Lithium‐Ion Batteries , 2016, Advanced materials.

[70]  Partha P Mukherjee,et al.  Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation. , 2012, Physical chemistry chemical physics : PCCP.

[71]  Florian Bouville,et al.  Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries , 2016, Nature Energy.

[72]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[73]  Xiulei Ji,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[74]  Miao Zhang,et al.  Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide , 2016 .

[75]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[76]  Héctor D. Abruña,et al.  Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage , 2018 .

[77]  G. Shi,et al.  Graphene materials for lithium–sulfur batteries , 2015 .

[78]  Chun Huang,et al.  Coral-like directional porosity lithium ion battery cathodes by ice templating , 2018 .

[79]  Yi Cui,et al.  Silicon–Carbon Nanotube Coaxial Sponge as Li‐Ion Anodes with High Areal Capacity , 2011 .

[80]  Jürgen Janek,et al.  Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure , 2012 .

[81]  X. Duan,et al.  A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes , 2016, Nature Communications.

[82]  Steven D. Lacey,et al.  Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings. , 2016, ACS applied materials & interfaces.

[83]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[84]  Tianyu Liu,et al.  3D printed functional nanomaterials for electrochemical energy storage , 2017 .

[85]  K. Edström,et al.  Nanocellulose Structured Paper-Based Lithium Metal Batteries , 2018, ACS Applied Energy Materials.

[86]  Xueliang Sun,et al.  Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. , 2018, ACS applied materials & interfaces.

[87]  Feng Zhang,et al.  3D printing technologies for electrochemical energy storage , 2017 .

[88]  Steven D. Lacey,et al.  Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene , 2019, ACS Applied Energy Materials.

[89]  Martin Ebner,et al.  Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes , 2015 .

[90]  Yunhui Gong,et al.  Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework , 2018, Proceedings of the National Academy of Sciences.

[91]  Jiangtao Hu,et al.  3D‐Printed Cathodes of LiMn1−xFexPO4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium‐Ion Battery , 2016 .

[92]  Jiang Liu,et al.  Wood‐Derived Hierarchically Porous Electrodes for High‐Performance All‐Solid‐State Supercapacitors , 2018, Advanced Functional Materials.

[93]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[94]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[95]  E. Wachsman,et al.  Highly conductive Li garnets by a multielement doping strategy. , 2015, Inorganic chemistry.

[96]  Yunhui Gong,et al.  Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode. , 2018, Nano letters.

[97]  Kang Xu,et al.  Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite , 2019, Nature.

[98]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[99]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[100]  Heon-Cheol Shin,et al.  Three‐Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries , 2005 .

[101]  Y. Chiang,et al.  Electrochemical Characterization of High Energy Density Graphite Electrodes Made by Freeze-Casting , 2018, ACS Applied Energy Materials.

[102]  Bingbing Chen,et al.  Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. , 2018, Chemical Society reviews.

[103]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[104]  Kun Fu,et al.  3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries , 2018, Energy Storage Materials.

[105]  Jun Liu,et al.  Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries , 2019, Joule.

[106]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[107]  Boyang Liu,et al.  Extrusion‐Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes , 2018, Advanced materials.

[108]  Kun Fu,et al.  Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. , 2017, ACS nano.

[109]  Xiulin Fan,et al.  Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. , 2016, ACS nano.

[110]  Quan-hong Yang,et al.  Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage , 2018, Nature Communications.

[111]  Evan M. Erickson,et al.  Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li‐ and Mn‐Rich Cathode Materials for Li‐Ion Batteries , 2018 .

[112]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[113]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[114]  Yingjie Zhu,et al.  Ultrahigh‐Capacity and Fire‐Resistant LiFePO4‐Based Composite Cathodes for Advanced Lithium‐Ion Batteries , 2019, Advanced Energy Materials.

[115]  L. Nyholm,et al.  Cellulose‐based Supercapacitors: Material and Performance Considerations , 2017 .

[116]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .

[117]  D. Wilkinson,et al.  A review of cathode materials and structures for rechargeable lithium–air batteries , 2015 .

[118]  Zhang Zhang,et al.  Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. , 2015, Chemical communications.

[119]  Boyang Liu,et al.  Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling , 2018 .

[120]  M. Morcrette,et al.  Thick Binder‐Free Electrodes for Li–Ion Battery Fabricated Using Templating Approach and Spark Plasma Sintering Reveals High Areal Capacity , 2018 .

[121]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[122]  Donghai Wang,et al.  Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries. , 2016, Nano letters.

[123]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[124]  Boyang Liu,et al.  A carbon-based 3D current collector with surface protection for Li metal anode , 2017, Nano Research.

[125]  Yonggang Yao,et al.  Highly Conductive, Lightweight, Low‐Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors , 2017 .

[126]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[127]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[128]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[129]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[130]  K. Tadanaga,et al.  Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites , 2013 .

[131]  Dunwei Wang,et al.  Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications , 2017, Nano Research.

[132]  Steven D. Lacey,et al.  Highly compressible, binderless and ultrathick holey graphene-based electrode architectures , 2017 .

[133]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[134]  Claudio Gerbaldi,et al.  Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries , 2012 .

[135]  Boyang Liu,et al.  Hierarchically Porous, Ultrathick, “Breathable” Wood‐Derived Cathode for Lithium‐Oxygen Batteries , 2018 .

[136]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[137]  Yongyao Xia,et al.  Sandwich, Vertical‐Channeled Thick Electrodes with High Rate and Cycle Performance , 2019, Advanced Functional Materials.

[138]  Ya‐Xia Yin,et al.  Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes , 2017, Advanced materials.

[139]  Boyang Liu,et al.  Nature‐Inspired Tri‐Pathway Design Enabling High‐Performance Flexible Li–O2 Batteries , 2019, Advanced Energy Materials.

[140]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[141]  Linsen Li,et al.  High-performance battery electrodes via magnetic templating , 2016, Nature Energy.

[142]  G. Ostojic,et al.  Carbon Nanotubes , 2010, Methods in Molecular Biology.

[143]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[144]  Boyang Liu,et al.  Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices , 2018, Advanced Energy Materials.

[145]  Liangbing Hu,et al.  Progress in 3D Printing of Carbon Materials for Energy‐Related Applications , 2017, Advanced materials.

[146]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[147]  L. Nazar,et al.  A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide , 2018, Science.

[148]  N. Kotov,et al.  A dendrite-suppressing composite ion conductor from aramid nanofibres , 2015, Nature Communications.

[149]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[150]  Yet-Ming Chiang,et al.  Design of Battery Electrodes with Dual‐Scale Porosity to Minimize Tortuosity and Maximize Performance , 2013, Advanced materials.

[151]  Lars Wågberg,et al.  Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose , 2013 .

[152]  Martin Pumera,et al.  3D-printing technologies for electrochemical applications. , 2016, Chemical Society reviews.

[153]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[154]  M. Pumera,et al.  2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. , 2018, Chemical Society reviews.

[155]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[156]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[157]  Yonggang Yao,et al.  Ultra‐Thick, Low‐Tortuosity, and Mesoporous Wood Carbon Anode for High‐Performance Sodium‐Ion Batteries , 2016 .