Transport and infrared photoresponse properties of InN nanorods/Si heterojunction

The present work explores the electrical transport and infrared (IR) photoresponse properties of InN nanorods (NRs)/n-Si heterojunction grown by plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN NRs is verified by the X-ray diffraction and transmission electron microscopy. Raman measurements show that these wurtzite InN NRs have sharp peaks E2(high) at 490.2 cm-1 and A1(LO) at 591 cm-1. The current transport mechanism of the NRs is limited by three types of mechanisms depending on applied bias voltages. The electrical transport properties of the device were studied in the range of 80 to 450 K. The faster rise and decay time indicate that the InN NRs/n-Si heterojunction is highly sensitive to IR light.

[1]  H. Hofsäss,et al.  BN/ZnO heterojunction diodes with apparently giant ideality factors , 2009 .

[2]  O. Ambacher,et al.  Evidence of electron accumulation at nonpolar surfaces of InN nanocolumns , 2007 .

[3]  C. T. Foxon,et al.  Electrical properties of n-GaN/n+-GaAs interfaces , 1998 .

[4]  M. Goiran,et al.  Electron cyclotron effective mass in indium nitride , 2010 .

[5]  R. Reeber,et al.  Thermal expansion and elastic properties of InN , 2001 .

[6]  S. Gwo,et al.  Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer , 2006 .

[7]  F. Ren,et al.  Transport properties of InN nanowires , 2005 .

[8]  M. Xie,et al.  Current transport property of n-GaN /n-6H-SiC heterojunction: Influence of interface states , 2005 .

[9]  M. Yoshimoto,et al.  Fabrication of InN/Si heterojunctions with rectifying characteristics , 2003 .

[10]  Zhong Lin Wang,et al.  ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across au electrodes. , 2006, Nano letters.

[11]  Cheul‐Ro Lee,et al.  Growth of hexagonal and cubic InN nanowires using MOCVD with different growth temperatures , 2010 .

[12]  Hiroshi Ogawa,et al.  Temperature dependence of Raman scattering in hexagonal indium nitride films , 2000 .

[13]  F. Giannazzo,et al.  Barrier inhomogeneity and electrical properties of Pt∕GaN Schottky contacts , 2007 .

[14]  D. Basak,et al.  Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction , 2007 .

[15]  K. Brennan,et al.  Ensemble Monte Carlo study of electron transport in wurtzite InN , 1999 .

[16]  Q. Guo,et al.  Thermal stability of indium nitride single crystal films , 1993 .

[17]  Xiaodong Wang,et al.  Experimental determination of strain-free raman frequencies and deformation potentials for the E2 high and A1(LO) modes in hexagonal InN , 2006 .

[18]  H. Lüth,et al.  Photoluminescence and intrinsic properties of MBE-grown InN nanowires. , 2006, Nano letters.

[19]  Achim Trampert,et al.  Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy , 2007 .

[20]  F. Werner,et al.  Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface. , 2009, Nano letters.

[21]  Lester F. Eastman,et al.  Surface chemical modification of InN for sensor applications , 2004 .

[22]  J. Chyi,et al.  Catalyst-free growth of indium nitride nanorods by chemical-beam epitaxy , 2006 .

[23]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[24]  Andreas Schenk,et al.  The Origin of Ideality Factors n > 2 of Shunts and Surfaces in the Dark I-V Curves of Si 625 Solar Cells , 2006 .

[25]  Akio Yamamoto,et al.  Indium nitride (InN): A review on growth, characterization, and properties , 2003 .

[26]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[27]  J. Chyi,et al.  Mechanism of luminescence in InGaN/GaN multiple quantum wells , 2000 .