A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites

We derive the structural parameters of the recently discovered very low luminosity Milky Way satellites through a maximum likelihood algorithm applied to SDSS data. For each satellite, even when only a few tens of stars are available down to the SDSS flux limit, the algorithm yields robust estimates and errors for the centroid, position angle, ellipticity, exponential half-light radius and number of member stars (within the SDSS). This latter parameter is then used in conjunction with stellar population models of the satellites to derive their absolute magnitudes and stellar masses, accounting for color-magnitude diagram shot noise. Most parameters are in good agreement with previous determinations, but we now properly account for parameter covariances. However, we find that faint satellites are somewhat more elliptical than initially thought, and ascribe this effect to the previous use of smoothed maps, which can be dominated by the smoothing (round) kernel. As a result, the faintest half of the Milky Way dwarf galaxies ( -->MV ?7.5) is significantly (4 ?) flatter ( --> = 0.47 ? 0.03) than its brightest half ( -->MV ? 7.5, --> = 0.32 ? 0.02). From our best models, we also investigate whether the seemingly distorted shape of the satellites, often taken to be a sign of tidal distortion, can be quantified. We find that, except for tentative evidence of distortion in Canes Venatici I and Ursa Major II, these can be completely accounted for by Poisson scatter in the sparsely sampled systems. We consider three scenarios that could explain the rather elongated shape of faint satellites: rotation supported systems, stars following the shape of more triaxial dark matter subhalos, or elongation due to tidal interaction with the Milky Way. Although none of these is entirely satisfactory, the last one appears the least problematic, but obviously warrants much deeper observations to track evidence of such tidal interaction.

[1]  Rodrigo Ibata,et al.  Draco, a flawless dwarf galaxy★ , 2006, astro-ph/0612263.

[2]  Roberto Ragazzoni,et al.  The Elongated Structure of the Hercules Dwarf Spheroidal Galaxy from Deep Large Binocular Telescope Imaging , 2007 .

[3]  B. Yanny,et al.  Is Ursa Major II the Progenitor of the Orphan Stream , 2006 .

[4]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2002 .

[5]  Tucson,et al.  NUMERICAL COLOR–MAGNITUDE DIAGRAM ANALYSIS OF SLOAN DIGITAL SKY SURVEY DATA AND APPLICATION TO THE NEW MILKY WAY SATELLITES , 2007, 0708.3758.

[6]  Candidate Milky Way satellites in the Galactic halo , 2006, astro-ph/0612173.

[7]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[8]  Sergey E. Koposov,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 THE DISCOVERY OF TWO EXTREMELY LOW LUMINOSITY MILKY WAY GLOBULAR CLUSTERS , 2022 .

[9]  R. Ibata,et al.  The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action , 2007, 0704.1318.

[10]  C. Grillmair,et al.  A 22° Tidal Tail for Palomar 5 , 2006, astro-ph/0603062.

[11]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[12]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[13]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[14]  Coryn A. L. Bailer-Jones,et al.  Exploiting large surveys for Galactic astronomy , 2006 .

[15]  Avon Huxor,et al.  Andromeda XVII: A New Low-Luminosity Satellite of M31 , 2008, 0802.0698.

[16]  A. McConnachie,et al.  Multiple dynamical components in Local Group dwarf spheroidals , 2006, astro-ph/0608687.

[17]  THE RR LYRAE DISTANCE TO THE DRACO DWARF SPHEROIDAL GALAXY , 2004 .

[18]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[19]  T. Sakamoto,et al.  Discovery of a Faint Old Stellar System at 150 kpc , 2006, astro-ph/0610858.

[20]  R. Carrera,et al.  The Star Formation History and Morphological Evolution of the Draco Dwarf Spheroidal Galaxy , 2001, astro-ph/0108159.

[21]  L. Hebb,et al.  Discovery of an unusual dwarf galaxy in the outskirts of the Milky Way , 2007 .

[22]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[23]  M. H. Bretherton,et al.  Statistics in Theory and Practice , 1966 .

[24]  V. Ripepi,et al.  Variable Stars in the Newly Discovered Milky Way Satellite in Bootes , 2006, astro-ph/0611285.

[25]  A. D. Mackey,et al.  The properties of Galactic globular cluster subsystems , 2005 .

[26]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[27]  Alan W. McConnachie,et al.  The Tidal Evolution of Local Group Dwarf Spheroidals , 2007, 0708.3087.

[28]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[29]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[32]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[33]  THE EFFECT OF DISSIPATION ON THE SHAPES OF DARK HALOS , 1993, astro-ph/9309001.

[34]  Daniel B. Zucker,et al.  Andromeda X, a New Dwarf Spheroidal Satellite of M31: Photometry , 2006, astro-ph/0601599.

[35]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .

[36]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[37]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[38]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[39]  H. Rix,et al.  A Deep Large Binocular Telescope View of the Canes Venatici I Dwarf Galaxy , 2007, 0709.3365.

[40]  D. Thompson,et al.  The Structural Properties and Star Formation History of Leo T from Deep LBT Photometry , 2008, 0801.4027.

[41]  Daisuke Nagai,et al.  The Effect of Gas Cooling on the Shapes of Dark Matter Halos , 2004, astro-ph/0405189.

[42]  M. Catelán,et al.  On the Newly Discovered Canes Venatici II dSph Galaxy , 2007, 0712.2241.

[43]  R. Ibata,et al.  Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way , 2000, astro-ph/0004011.

[44]  N. W. Evans,et al.  Ursa Major: A Missing Low-Mass CDM Halo? , 2005 .

[45]  Yoshihiko Yamada,et al.  A Suprime-Cam study of the stellar population of the Ursa Major I dwarf spheroidal galaxy , 2008, 0804.2976.

[46]  J. F. Navarro,et al.  Cosmic ménage à trois: the origin of satellite galaxies on extreme orbits , 2007, 0704.1773.

[47]  P. Madau,et al.  The Shapes, Orientation, and Alignment of Galactic Dark Matter Subhalos , 2007, 0705.2037.

[48]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[49]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[50]  Zeljko Ivezic,et al.  Andromeda IX: A New Dwarf Spheroidal Satellite of M31 , 2004 .

[51]  Orbital parameters of infalling dark matter substructures , 2005 .

[52]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[53]  E. Baron,et al.  The ACS Survey of Galactic Globular Clusters. II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models , 2007, 0706.0847.

[54]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[55]  Kyle B. Westfall,et al.  EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS. VIII. THE EXTENDED STRUCTURE OF THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2006 .

[56]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[57]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[58]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[59]  Stuart P. D. Gill,et al.  The evolution of substructure – II. Linking dynamics to environment , 2004, astro-ph/0404255.

[60]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[61]  Walter Dehnen,et al.  A Matched-Filter Analysis of the Tidal Tails of the Globular Cluster Palomar 5 , 2002 .

[62]  Puragra Guhathakurta,et al.  Discovery of Andromeda XIV: A Dwarf Spheroidal Dynamical Rogue in the Local Group? , 2007, astro-ph/0702635.

[63]  Michael J. Kurtz,et al.  A V and I CCD Mosaic Survey of the Ursa Minor Dwarf Spheroidal Galaxy , 1998 .