Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems

Abstract Trigonometrically fitted multi-step Runge–Kutta–Nystrom (TFMSRKN) methods for solving numerically oscillatory special second-order initial value problems are introduced. TFMSRKN methods integrate exactly the differential system whose solutions can be expressed as the linear combinations of functions from the set { exp ( i w t ) , exp ( − i w t ) } or equivalently the set {cos (wt), sin (wt)}, where w represents an approximation of the main frequency of the problem. The corresponding order conditions are given and two explicit four-stage TFMSRKN methods with order five are constructed. Stability of the new methods is examined and the regions of stability are depicted. Numerical results show that our new methods are more efficient in comparison with other well-known high quality methods proposed in the scientific literature.

[1]  Theodore E. Simos,et al.  A new approach on the construction of trigonometrically fitted two step hybrid methods , 2016, J. Comput. Appl. Math..

[2]  Yonghui Zhang,et al.  Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators , 2011, Comput. Phys. Commun..

[3]  Higinio Ramos,et al.  On the frequency choice in trigonometrically fitted methods , 2010, Appl. Math. Lett..

[4]  Bin Wang,et al.  Two-step extended RKN methods for oscillatory systems , 2011, Comput. Phys. Commun..

[5]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[6]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[7]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[8]  Xinyuan Wu,et al.  Error analysis of explicit TSERKN methods for highly oscillatory systems , 2013, Numerical Algorithms.

[9]  T. E. Simos,et al.  Modified two‐step hybrid methods for the numerical integration of oscillatory problems , 2017 .

[10]  Higinio Ramos,et al.  Variable-stepsize Chebyshev-type methods for the integration of second-order I.V.P.'s , 2007 .

[11]  Beatrice Paternoster,et al.  General linear methods for y′′ = f (y (t)) , 2012, Numerical Algorithms.

[12]  Jiyong Li,et al.  Multi-step Runge-Kutta-Nyström methods for special second-order initial value problems , 2017 .

[13]  Higinio Ramos,et al.  On the choice of the frequency in trigonometrically-fitted methods for periodic problems , 2015, J. Comput. Appl. Math..

[14]  G. Vanden Berghe,et al.  Optimal implicit exponentially-fitted Runge–Kutta methods , 2001 .

[15]  John P. Coleman,et al.  Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .

[16]  G. Dahlquist On accuracy and unconditional stability of linear multistep methods for second order differential equations , 1978 .

[17]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[18]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[19]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[20]  Higinio Ramos,et al.  Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .

[21]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[22]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[23]  Xinyuan Wu,et al.  Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..

[24]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[25]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .

[26]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[27]  Raffaele D'Ambrosio,et al.  Exponentially fitted two-step hybrid methods for y″=f(x, y) , 2011, J. Comput. Appl. Math..

[28]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[29]  Hans Van de Vyver,et al.  Scheifele two-step methods for perturbed oscillators , 2009 .

[30]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[31]  Zacharias A. Anastassi,et al.  An optimized Runge-Kutta method for the solution of orbital problems , 2005 .

[32]  Hans Van de Vyver,et al.  An embedded exponentially fitted Runge Kutta Nyström method for the numerical solution of orbital problems , 2006 .