Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems
暂无分享,去创建一个
[1] Theodore E. Simos,et al. A new approach on the construction of trigonometrically fitted two step hybrid methods , 2016, J. Comput. Appl. Math..
[2] Yonghui Zhang,et al. Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators , 2011, Comput. Phys. Commun..
[3] Higinio Ramos,et al. On the frequency choice in trigonometrically fitted methods , 2010, Appl. Math. Lett..
[4] Bin Wang,et al. Two-step extended RKN methods for oscillatory systems , 2011, Comput. Phys. Commun..
[5] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[6] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[7] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[8] Xinyuan Wu,et al. Error analysis of explicit TSERKN methods for highly oscillatory systems , 2013, Numerical Algorithms.
[9] T. E. Simos,et al. Modified two‐step hybrid methods for the numerical integration of oscillatory problems , 2017 .
[10] Higinio Ramos,et al. Variable-stepsize Chebyshev-type methods for the integration of second-order I.V.P.'s , 2007 .
[11] Beatrice Paternoster,et al. General linear methods for y′′ = f (y (t)) , 2012, Numerical Algorithms.
[12] Jiyong Li,et al. Multi-step Runge-Kutta-Nyström methods for special second-order initial value problems , 2017 .
[13] Higinio Ramos,et al. On the choice of the frequency in trigonometrically-fitted methods for periodic problems , 2015, J. Comput. Appl. Math..
[14] G. Vanden Berghe,et al. Optimal implicit exponentially-fitted Runge–Kutta methods , 2001 .
[15] John P. Coleman,et al. Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .
[16] G. Dahlquist. On accuracy and unconditional stability of linear multistep methods for second order differential equations , 1978 .
[17] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .
[18] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[19] Liviu Gr. Ixaru,et al. P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .
[20] Higinio Ramos,et al. Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .
[21] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[22] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[23] Xinyuan Wu,et al. Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..
[24] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[25] Ben P. Sommeijer,et al. Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .
[26] J. M. Franco. Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .
[27] Raffaele D'Ambrosio,et al. Exponentially fitted two-step hybrid methods for y″=f(x, y) , 2011, J. Comput. Appl. Math..
[28] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[29] Hans Van de Vyver,et al. Scheifele two-step methods for perturbed oscillators , 2009 .
[30] John P. Coleman,et al. Mixed collocation methods for y ′′ =f x,y , 2000 .
[31] Zacharias A. Anastassi,et al. An optimized Runge-Kutta method for the solution of orbital problems , 2005 .
[32] Hans Van de Vyver,et al. An embedded exponentially fitted Runge Kutta Nyström method for the numerical solution of orbital problems , 2006 .