Coherent structure extraction in turbulent channel flow using boundary adapted wavelets

ABSTRACT We introduce boundary adapted wavelets, which are orthogonal and have the same scale in the three spatial directions. The construction thus yields a multiresolution analysis. We analyse direct numerical simulation data of turbulent channel flow computed at a friction Reynolds number of 395, and investigate the role of coherent vorticity. Thresholding of the vorticity wavelet coefficients allows us to split the flow into two parts, coherent and incoherent flows. The coherent vorticity is reconstructed from its few intense wavelet coefficients and the coherent velocity is reconstructed using Biot–Savart's law. The statistics of the coherent flow, i.e. energy and enstrophy spectra, are close to the statistics of the total flow, and moreover, the nonlinear energy budgets of the total flow are very well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e. noise-like, background flow whose energy is equidistributed.

[1]  Marie Farge,et al.  Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels , 1988 .

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Kai Schneider,et al.  Coherent Vorticity Simulation of Three-Dimensional Forced Homogeneous Isotropic Turbulence , 2011, Multiscale Model. Simul..

[4]  Y. Kaneda,et al.  Small-scale statistics in direct numerical simulation of turbulent channel flow at high-Reynolds number , 2011 .

[5]  Steven A. Orszag,et al.  Structure and dynamics of homogeneous turbulence: models and simulations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[7]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[8]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[9]  C. Meneveau Analysis of turbulence in the orthonormal wavelet representation , 1991, Journal of Fluid Mechanics.

[10]  J. Jiménez Turbulent flows over rough walls , 2004 .

[11]  Gershon Elber,et al.  Multiresolution Analysis , 2022 .

[12]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[13]  M. Farge,et al.  On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction , 2008 .

[14]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[15]  P. Moin,et al.  Reynolds-stress and dissipation-rate budgets in a turbulent channel flow , 1987, Journal of Fluid Mechanics.

[16]  Kai Schneider,et al.  Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets , 2005, Journal of Fluid Mechanics.

[17]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[18]  W. Press Numerical recipes in Fortran 77 : the art of scientific computing : volume 1 of fortran numerical recipes , 1996 .

[19]  Y. Maday,et al.  Adaptativité par ondelettes : conditions aux limites et dimensions supérieures , 1992 .

[20]  M. Farge,et al.  Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. , 2001, Physical review letters.

[21]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[22]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[23]  Jonathan Morrison,et al.  Anisotropy and energy flux in wall turbulence , 2003, Journal of Fluid Mechanics.

[24]  Fazle Hussain,et al.  Coherent structures near the wall in a turbulent channel flow , 1997, Journal of Fluid Mechanics.

[25]  Gerlind Plonka-Hoch,et al.  On the construction of wavelets on a bounded interval , 1995, Adv. Comput. Math..

[26]  Alexander Smits,et al.  High–Reynolds Number Wall Turbulence , 2011 .

[27]  Kai Schneider,et al.  Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold , 2005 .

[28]  Jochen Fröhlich,et al.  Orthonormal Polynomial Wavelets on the Interval and Applications to the Analysis of Turbulent Flow Fields , 2003, SIAM J. Appl. Math..

[29]  R. Rogallo,et al.  Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions , 2003 .

[30]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[31]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[32]  O. Vasilyev,et al.  Stochastic coherent adaptive large eddy simulation method , 2002 .

[33]  Kai Schneider,et al.  Coherent Vortex Simulation (CVS), A Semi-Deterministic Turbulence Model Using Wavelets , 2001 .

[34]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[35]  Kai Schneider,et al.  Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint , 2007 .

[36]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[37]  Jacques Periaux,et al.  Wavelet methods in computational fluid dynamics , 1993 .

[38]  D. Rempfer,et al.  Energy analysis of turbulent channel flow using biorthogonal wavelets , 2007 .

[39]  B. Cantwell,et al.  Topology of fine-scale motions in turbulent channel flow , 1996, Journal of Fluid Mechanics.

[40]  S. Mallat A wavelet tour of signal processing , 1998 .

[41]  R. Moser,et al.  Direct numerical simulation of turbulent channel flow up to $\mathit{Re}_{{\it\tau}}\approx 5200$ , 2014, Journal of Fluid Mechanics.

[42]  M. Farge,et al.  Coherent vorticity extraction in turbulent boundary layers using orthogonal wavelets , 2010, Proceeding of Seventh International Symposium on Turbulence and Shear Flow Phenomena.