Combining NMR Relaxation with Chemical Shift Perturbation Data to Drive Protein–protein Docking

[1]  Ad Bax,et al.  Weak alignment NMR: a hawk-eyed view of biomolecular structure. , 2005, Current opinion in structural biology.

[2]  Alexandre M J J Bonvin,et al.  Various strategies of using residual dipolar couplings in NMR‐driven protein docking: Application to Lys48‐linked di‐ubiquitin and validation against 15N‐relaxation data , 2005, Proteins.

[3]  Alexandre M J J Bonvin,et al.  Data‐driven docking for the study of biomolecular complexes , 2005, The FEBS journal.

[4]  D. Fushman,et al.  Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements , 2004 .

[5]  R. Abagyan,et al.  Identification of protein-protein interaction sites from docking energy landscapes. , 2004, Journal of molecular biology.

[6]  Angela M Gronenborn,et al.  Filtering and selection of structural models: Combining docking and NMR , 2003, Proteins.

[7]  Charles D Schwieters,et al.  Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. , 2003, Journal of the American Chemical Society.

[8]  M. Akke,et al.  Combined use of NMR relaxation measurements and hydrodynamic calculations to study protein association. Evidence for tetramers of low molecular weight protein tyrosine phosphatase in solution. , 2003, Journal of the American Chemical Society.

[9]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[10]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[11]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[12]  L. Kay,et al.  Domain orientation in β-cyclodextrin-loaded maltose binding protein: Diffusion anisotropy measurements confirm the results of a dipolar coupling study , 2001, Journal of biomolecular NMR.

[13]  J. García de la Torre,et al.  HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. , 2000, Journal of magnetic resonance.

[14]  G M Clore,et al.  Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIAGlucose of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system , 2000, The EMBO journal.

[15]  I. Campbell,et al.  The relative orientation of the fibronectin 6F11F2 module pair: A 15N NMR relaxation study , 2000, Journal of biomolecular NMR.

[16]  J. Hus,et al.  Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data , 2000, Journal of biomolecular NMR.

[17]  D. Cowburn,et al.  Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). , 1999, Biochemistry.

[18]  J. Hus,et al.  MODEL-DEPENDENT ARTIFACTS IN LONG-RANGE STRUCTURE DETERMINATION USING ORIENTATIONAL RESTRAINTS DERIVED FROM NMR RELAXATION , 1999 .

[19]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[20]  D. S. Garrett,et al.  Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy , 1997, Nature Structural Biology.

[21]  P E Wright,et al.  Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. , 1995, Science.

[22]  H. Berendsen,et al.  The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. , 1994, Journal of molecular biology.

[23]  M H Saier,et al.  Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc. , 1993, Biochemistry.

[24]  M Ikura,et al.  Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. , 1992, Biochemistry.

[25]  S J Remington,et al.  Three-dimensional structure of the Escherichia coli phosphocarrier protein IIIglc. , 1991, Proceedings of the National Academy of Sciences of the United States of America.