The impact of alkali‐ion intercalation on redox chemistry and mechanical deformations: Case study on intercalation of Li, Na, and K ions into FePO 4 cathode

[1]  Ö. Ö. Çapraz,et al.  Electrochemical strain evolution in iron phosphate composite cathodes during lithium and sodium ion intercalation , 2020 .

[2]  M. Casas-Cabanas,et al.  Rate dependence of the reaction mechanism in olivine NaFePO4 Na‐ion cathode material , 2018 .

[3]  K. Walczak,et al.  Surface investigation of chemically delithiatied FePO4 as a cathode material for sodium ion batteries , 2018, Solid State Ionics.

[4]  J. Carrasco,et al.  Revealing the Mechanism of Sodium Diffusion in NaxFePO4 Using an Improved Force Field , 2018 .

[5]  Shinichi Komaba,et al.  Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion". , 2018, Chemical record.

[6]  N. Sottos,et al.  Strain Evolution in Lithium Manganese Oxide Electrodes , 2018 .

[7]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[8]  Q. Yan,et al.  Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices? , 2017 .

[9]  A. Michaelis,et al.  In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries , 2017 .

[10]  Y. Chiang,et al.  Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4. , 2017, Nano letters.

[11]  Xinping Ai,et al.  Phosphate Framework Electrode Materials for Sodium Ion Batteries , 2017, Advanced science.

[12]  A. Michaelis,et al.  Sodiation vs. Lithiation of FePO4: A comparative kinetic study , 2016 .

[13]  J. Carrasco,et al.  Investigation of sodium insertion-extraction in olivine NaxFePO4 (0 ≤x≤ 1) using first-principles calculations. , 2016, Physical chemistry chemical physics : PCCP.

[14]  M. Islam,et al.  Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects , 2016 .

[15]  Jun Yu Li,et al.  Dual-doping to suppress cracking in spinel LiMn2O4: a joint theoretical and experimental study. , 2016, Physical chemistry chemical physics : PCCP.

[16]  Doron Aurbach,et al.  Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. , 2016, ACS applied materials & interfaces.

[17]  D. Mitlin,et al.  Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li , 2014 .

[18]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[19]  S. C. Parker,et al.  Particle shapes and surface structures of olivine NaFePO₄ in comparison to LiFePO₄. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Jian Yu Huang,et al.  In Situ Atomic‐Scale Imaging of Phase Boundary Migration in FePO4 Microparticles During Electrochemical Lithiation , 2013, Advanced materials.

[21]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[22]  Mark W. Youngblood,et al.  Integrated genomic analyses of de novo pathways underlying atypical meningiomas. , 2018, Nature communications.

[23]  I. Uchida,et al.  In Situ Observation of LiNiO2 Single‐Particle Fracture during Li ‐ Ion Extraction and Insertion , 1999 .