Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle's theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.

[1]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .

[2]  Mihalis Yannakakis,et al.  Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.

[3]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[4]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[5]  Erkki Mäkinen,et al.  Various heuristic algorithms to minimise the two-page crossing numbers of graphs , 2015, Open Comput. Sci..

[6]  Mikolás Janota,et al.  Digital Object Identifier (DOI): , 2000 .

[7]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[8]  David R. Wood,et al.  Graph Treewidth and Geometric Thickness Parameters , 2005, GD.

[9]  Erkki Mäkinen,et al.  One- and two-page crossing numbers for some types of graphs , 2010, Int. J. Comput. Math..

[10]  Martin Wattenberg,et al.  Arc diagrams: visualizing structure in strings , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[11]  Martin Grohe,et al.  Computing crossing numbers in quadratic time , 2000, STOC '01.

[12]  Etienne de Klerk,et al.  Improved Lower Bounds for the 2-Page Crossing Numbers of Km, n and Kn via Semidefinite Programming , 2011, SIAM J. Optim..

[13]  B. Mohar,et al.  Graph Minors , 2009 .

[14]  William T. Tutte A Ring in Graph Theory , 1947 .

[15]  Giuseppe Liotta,et al.  On the Parameterized Complexity of Layered Graph Drawing , 2001, Algorithmica.

[16]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[17]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[18]  David R. Wood,et al.  On the Book Thickness of k-Trees , 2011, Discret. Math. Theor. Comput. Sci..

[19]  Oswin Aichholzer,et al.  The 2-Page Crossing Number of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}$$\end{document} , 2012, Discrete & Computational Geometry.

[20]  Kamal Srivastava,et al.  $$K$$-page crossing number minimization problem: An evaluation of heuristics and its solution using GESAKP , 2013, Memetic Comput..

[21]  Jan Kyncl Enumeration of simple complete topological graphs , 2009, Eur. J. Comb..

[22]  Robert William Shirey,et al.  Implementation and analysis of efficient graph planarity testing algorithms , 1969 .

[23]  John Clark,et al.  A First Look at Graph Theory , 1991 .

[24]  F. Harary,et al.  Planar Permutation Graphs , 1967 .

[25]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[26]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[27]  Manfred Wiegers,et al.  Recognizing Outerplanar Graphs in Linear Time , 1986, WG.

[28]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[29]  Farhad Shahrokhi,et al.  Book Embeddings and Crossing Numbers , 1994, WG.

[30]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[31]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[32]  Sandra Mitchell Hedetniemi Linear Algorithms to Recognize Outerplanar and Maximal Outerplanar Graphs , 1979, Inf. Process. Lett..

[33]  Lenwood S. Heath Embedding Planar Graphs in Seven Pages , 1984, FOCS.

[34]  Etienne de Klerk,et al.  Book drawings of complete bipartite graphs , 2014, Discret. Appl. Math..

[35]  Bruce A. Reed,et al.  Computing crossing number in linear time , 2007, STOC '07.

[36]  Paul C. Kainen,et al.  Some recent results in topological graph theory , 1974 .

[37]  Erik D. Demaine,et al.  -Approximation for Treewidth of Graphs Excluding a Graph with One Crossing as a Minor , 2002, APPROX.

[38]  David Eppstein,et al.  Fixed Parameter Tractability of Crossing Minimization of Almost-Trees , 2013, GD.

[39]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[40]  Celina M. H. de Figueiredo,et al.  The Same Upper Bound for Both: The 2-Page and the Rectilinear Crossing Numbers of the n-Cube , 2013, WG.

[41]  Pinar Heggernes,et al.  Graph-Theoretic Concepts in Computer Science , 2016, Lecture Notes in Computer Science.

[42]  Michael J. Pelsmajer,et al.  Crossing Numbers and Parameterized Complexity , 2007, Graph Drawing.