Identifying Structural Mechanisms in Standard Genetic Programming
暂无分享,去创建一个
[1] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[2] Riccardo Poli,et al. The evolution of size and shape , 1999 .
[3] Terence Soule,et al. Code growth in genetic programming , 1996 .
[4] J. K. Kinnear,et al. Advances in Genetic Programming , 1994 .
[5] Jason M. Daida,et al. Visualizing Tree Structures in Genetic Programming , 2003, Genetic Programming and Evolvable Machines.
[6] Riccardo Poli,et al. Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.
[7] Jason M. Daida,et al. Analysis of single-node (building) blocks in genetic programming , 1999 .
[8] Jason M. Daida,et al. What Makes a Problem GP-Hard? , 2003 .
[9] L. Sander. Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .
[10] J. C. Poggendorf. Annalen der Physik und Chemie , 1829 .
[11] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[12] Donald E. Knuth,et al. The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .
[13] William B. Langdon,et al. Size Fair and Homologous Tree Crossovers for Tree Genetic Programming , 2000, Genetic Programming and Evolvable Machines.
[14] Rachel Harrison,et al. Characterizing a Tunably Difficult Problem in Genetic Programming , 2000, GECCO.
[15] René Schott,et al. Random generation of trees - random generators in computer science , 1995 .
[16] G. Raidl. A Hybrid GP Approach for Numerically Robust Symbolic Regression , 2002 .
[17] Jason M. Daida,et al. Limits to expression in genetic programming: lattice-aggregate modeling , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).
[18] George David Birkhoff. The collected mathematical papers , 1909 .
[19] Jason M. Daida,et al. What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem in Genetic Programming , 1999, Genetic Programming and Evolvable Machines.
[20] David B. Fogel,et al. Guidelines for a suitable encoding , 1997 .
[21] Philippe Flajolet,et al. The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..
[22] Una-May O'Reilly,et al. Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.
[23] William B. Langdon,et al. Quadratic Bloat in Genetic Programming , 2000, GECCO.
[24] Donald E. Knuth,et al. The art of computer programming: V.1.: Fundamental algorithms , 1997 .
[25] David W. Corne,et al. A new evolutionary approach to the degree-constrained minimum spanning tree problem , 1999, IEEE Trans. Evol. Comput..
[26] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[27] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[28] L. Alonso,et al. Random Generation of Trees , 1995, Springer US.
[29] Jason M. Daida,et al. What Makes a Problem GP-Hard? Validating a Hypothesis of Structural Causes , 2003, GECCO.
[30] Zbigniew Michalewicz,et al. Handbook of Evolutionary Computation , 1997 .
[31] William B. Langdon,et al. Combining Decision Trees and Neural Networks for Drug Discovery , 2002, EuroGP.