Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems

We give several different formulations for the discrete-time linear-quadratic control problem in terms of structured eigenvalue problems, and discuss the relationships among the associated structured objects: symplectic matrices and pencils, BVD-pencils and polynomials, and the recently introduced classes of palindromic pencils and matrix polynomials. We show how these structured objects can be transformed into each other, and also how their eigenvalues, eigenvectors and invariant/deflating subspaces are related.

[1]  N. Wiener,et al.  Systems Theory , 2018, Formation Control of Multi-Agent Systems.

[2]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[3]  A. Laub,et al.  On the numerical solution of the discrete-time algebraic Riccati equation , 1980 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Volker Mehrmann,et al.  A symplectic orthogonal method for single input or single ouput discrete time optimal quadratic control problems , 1988 .

[6]  V. Mehrmann Existence, Uniqueness, and Stability of Solutions to Singular Linear Quadratic Optimal Control Problems , 1989 .

[7]  Volker Mehrmann,et al.  An analysis of structure preserving numerical methods for symplectic eigenvalue problems , 1991 .

[8]  Mihail M. Konstantinov,et al.  Computational methods for linear control systems , 1991 .

[9]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[10]  R. Glowinski,et al.  Numerical methods for multibody systems , 1994 .

[11]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[12]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[13]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[14]  H. Faßbender Symplectic Methods for the Symplectic Eigenproblem , 2002, Springer US.

[15]  V. Mehrmann,et al.  Perturbation theory for matrix equations , 2003, IEEE Transactions on Automatic Control.

[16]  Volker Mehrmann,et al.  ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .

[17]  P. Lancaster,et al.  Indefinite Linear Algebra and Applications , 2005 .

[18]  Hongguo Xu On equivalence of pencils from discrete-time and continuous-time control☆ , 2006 .

[19]  Roger A. Horn,et al.  Canonical forms for complex matrix congruence and ∗congruence , 2006, 0709.2473.

[20]  Charles R. Johnson,et al.  Complementary bases in symplectic matrices and a proof that their determinant is one , 2006 .

[21]  P. Rentrop,et al.  Differential-Algebraic Equations , 2006 .

[22]  Leiba Rodman,et al.  Bounded and stably bounded palindromic difference equations of first order , 2006 .

[23]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[24]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[25]  Hongguo Xu,et al.  Transformations between discrete-time and continuous-time algebraic Riccati equations☆ , 2007 .

[26]  C. Schröder URV decomposition based structured methods for palindromic and even eigenvalue problems , 2007 .

[27]  Volker Mehrmann,et al.  Staircase forms and trimmed linearizations for structured matrix polynomials , 2007 .

[28]  Daniel Kressner,et al.  Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.

[29]  Doktor der Naturwissenschaften Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods , 2008 .

[30]  E. Chu,et al.  Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms , 2008 .

[31]  Volker Mehrmann,et al.  Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..

[32]  V. Mehrmann,et al.  Structured decompositions for matrix triples: SVD-like concepts for structured matrices , 2009 .

[33]  Leiba Rodman,et al.  Perturbation analysis of Lagrangian invariant subspaces of symplectic matrices , 2009 .