Topological defects control collective dynamics in neural progenitor cell cultures

[1]  I. Aranson,et al.  Topological Defects in a Living Nematic Ensnare Swimming Bacteria , 2017 .

[2]  Oleg D. Lavrentovich,et al.  Command of active matter by topological defects and patterns , 2016, Science.

[3]  Pascal Silberzan,et al.  Topological defects in confined populations of spindle-shaped cells , 2016, Nature Physics.

[4]  M. Sano,et al.  Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria. , 2016, Physical review. E.

[5]  J. Yeomans,et al.  Defect-Mediated Morphologies in Growing Cell Colonies. , 2016, Physical review letters.

[6]  M. Hagan,et al.  Orientational order of motile defects in active nematics. , 2015, Nature materials.

[7]  M. Bowick,et al.  Topology and dynamics of active nematic vesicles , 2014, Science.

[8]  Hannah G. Yevick,et al.  Perfect nematic order in confined monolayers of spindle-shaped cells. , 2014, Soft matter.

[9]  Yu-qiang Ma,et al.  Topological structure dynamics revealing collective evolution in active nematics , 2013, Nature Communications.

[10]  H. Kori,et al.  Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors , 2013, Science.

[11]  S. Ramaswamy,et al.  Hydrodynamics of soft active matter , 2013 .

[12]  M. Bowick,et al.  Defect annihilation and proliferation in active nematics. , 2013, Physical review letters.

[13]  K. Kaneko,et al.  Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells , 2013, Proceedings of the National Academy of Sciences.

[14]  Andreas R. Bausch,et al.  Topological defects and density fluctuations in collectively moving systems , 2013, Proceedings of the National Academy of Sciences.

[15]  Yutaka Sumino,et al.  Large-scale vortex lattice emerging from collectively moving microtubules , 2012, Nature.

[16]  A. Griffa,et al.  Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy , 2012, Biomechanics and modeling in mechanobiology.

[17]  A. Kimura,et al.  Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain , 2011, The EMBO journal.

[18]  J. Yeomans,et al.  Spontaneous flow states in active nematics: A unified picture , 2008, 0811.3432.

[19]  Albert J. Keung,et al.  Substrate modulus directs neural stem cell behavior. , 2008, Biophysical journal.

[20]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[21]  Gabor Szabo,et al.  Dynamic features of postnatal subventricular zone cell motility: A two‐photon time‐lapse study , 2007, The Journal of comparative neurology.

[22]  Koichi Kawakami,et al.  Tol2: a versatile gene transfer vector in vertebrates , 2007, Genome Biology.

[23]  S. Ramaswamy,et al.  Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic , 2006, Science.

[24]  M. Götz,et al.  The cell biology of neurogenesis , 2006, International Journal of Developmental Neuroscience.

[25]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[26]  H. Chaté,et al.  Simple model for active nematics: quasi-long-range order and giant fluctuations. , 2006, Physical review letters.

[27]  Austin G Smith,et al.  Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell , 2005, PLoS biology.

[28]  Satoshi Sawai,et al.  An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations , 2005, Nature.

[29]  Adam J. Engler,et al.  Myotubes differentiate optimally on substrates with tissue-like stiffness , 2004, The Journal of cell biology.

[30]  Frank Jülicher,et al.  Erratum: Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments [Phys. Rev. Lett. 92 , 078101 (2004)] , 2004 .

[31]  J. Joanny,et al.  Asters, vortices, and rotating spirals in active gels of polar filaments. , 2004, Physical review letters.

[32]  S. Fujita The discovery of the matrix cell, the identification of the multipotent neural stem cell and the development of the central nervous system. , 2003, Cell structure and function.

[33]  E. Kramer,et al.  Defect coarsening in a biological system: the vascular cambium of cottonwood trees. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  J. Toner,et al.  Active nematics on a substrate: Giant number fluctuations and long-time tails , 2002, cond-mat/0208573.

[35]  Sriram Ramaswamy,et al.  Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. , 2001, Physical review letters.

[36]  Dieter Kaufmann,et al.  Elastic properties of nematoid arrangements formed by amoeboid cells , 2000 .

[37]  Arturo Alvarez-Buylla,et al.  Chain Migration of Neuronal Precursors , 1996, Science.