Operation range evaluation of TEA CO2-laser-based DIAL system

The outcomes of numerical simulation of echo-location and ethylene sounding ranges in the atmosphere by differential absorption lidar based on TEA CO2 lasers are submitted. Is established, that the lidar echo-location range has close to logarithmic function of energy and peak power of sounding pulses. The echo-location range of IR lidar based on TEA CO2 lasers differs insignificantly on strong and weak emission lines of the laser, that allows to produce the effective sounding of the atmosphere in all range of wavelength tuning of TEA CO2 laser radiation without correction of pulse energy on various emission lines. Is shown, that the application of narrow-band spectral filters is justified at use of low-noise detectors and receiver FOV angles more than 5 mrad. The evaluations of a relative errors of ethylene concentration measurement in the atmosphere in various modes of registration are conducted.