Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation.

We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio- and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15% yields, respectively. X-ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphinamide, -thiophosphinamide, and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid-state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.

[1]  J. Woollins,et al.  Synthesis of ligands based on naphthalene peri-substituted by Group 15 and 16 elements and their coordination chemistry , 2011 .

[2]  S. Woutersen,et al.  Bimodal dynamics of mechanically constrained hydrogen bonds revealed by vibrational photon echoes. , 2011, The Journal of chemical physics.

[3]  J. Woollins,et al.  Naphthalene and related systems peri-substituted by Group 15 and 16 elements. , 2011, Chemistry.

[4]  Jeffrey S. Hannam,et al.  In trap fragmentation and optical characterization of rotaxanes. , 2010, Physical chemistry chemical physics : PCCP.

[5]  Jian Zhou,et al.  A facile method for the synthesis of oxindole based quaternary alpha-aminonitriles via the Strecker reaction. , 2010, Organic & biomolecular chemistry.

[6]  J. Berná,et al.  Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. , 2010, Journal of the American Chemical Society.

[7]  F. Paolucci,et al.  Nitrone [2]rotaxanes: simultaneous chemical protection and electrochemical activation of a functional group. , 2010, Journal of the American Chemical Society.

[8]  David A. Leigh,et al.  Operation Mechanism of a Molecular Machine Revealed Using Time-Resolved Vibrational Spectroscopy , 2010, Science.

[9]  J. Oomens,et al.  Controlled hydrogen-bond breaking in a rotaxane by discrete solvation. , 2010, Angewandte Chemie.

[10]  Mehdi D. Esrafili,et al.  How do phosphoramides compete with phosphine oxides in lanthanide complexation? Structural, electronic and energy aspects at ab initio and DFT levels , 2010 .

[11]  M. Wills,et al.  Asymmetric organocatalysis of the addition of acetone to 2-nitrostyrene using N-diphenylphosphinyl-1,2-diphenylethane-1,2-diamine (PODPEN) , 2010 .

[12]  Ian W. Wyman,et al.  Host-guest complexes and pseudorotaxanes of cucurbit[7]uril with acetylcholinesterase inhibitors. , 2009, The Journal of organic chemistry.

[13]  D. Williams,et al.  Directed ortho MetallationChemistry and Phosphine Synthesis: New Ligands for the Suzuki-MiyauraReaction , 2009 .

[14]  M. Drabbels,et al.  Conformational flexibility of a rotaxane thread probed by electronic spectroscopy in helium nanodroplets. , 2009, Journal of the American Chemical Society.

[15]  D. Leigh,et al.  Rotaxane-based propeptides: protection and enzymatic release of a bioactive pentapeptide. , 2009, Angewandte Chemie.

[16]  P. Beer,et al.  Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. , 2009, Chemical Society reviews.

[17]  You Huang,et al.  Bifunctional phosphine-catalyzed domino reaction: highly stereoselective synthesis of cis-2,3-dihydrobenzofurans from salicyl N-thiophosphinyl imines and allenes. , 2009, Organic letters.

[18]  S. García‐Granda,et al.  An Unprecedented Phosphinamidic Gold(III) Metallocycle: Synthesis via Tin(IV) Precursors, Structure, and Multicomponent Catalysis , 2009 .

[19]  J. Oomens,et al.  Stiff, and sticky in the right places: binding interactions in isolated mechanically interlocked molecules probed by mid-infrared spectroscopy. , 2009, Journal of the American Chemical Society.

[20]  R. Yazaki,et al.  Direct catalytic asymmetric addition of allyl cyanide to ketones. , 2008, Journal of the American Chemical Society.

[21]  D. Philp,et al.  Integrating replication processes with mechanically interlocked molecular architectures , 2008 .

[22]  Bradley D. Smith,et al.  Synthesis and photophysical investigation of squaraine rotaxanes by "clicked capping". , 2008, Organic letters.

[23]  Jie Pan,et al.  Supramolecular chiral phosphorous ligands based on a [2]pseudorotaxane complex for asymmetric hydrogenation , 2008 .

[24]  Euan R Kay,et al.  Three state redox-active molecular shuttle that switches in solution and on a surface. , 2008, Journal of the American Chemical Society.

[25]  A. Slawin,et al.  A chemically-driven molecular information ratchet. , 2008, Journal of the American Chemical Society.

[26]  M. Sekiguchi,et al.  First Catenane‐Containing Phosphino Groups: A Step toward a Catenane Ligand , 2008 .

[27]  B. Koivisto,et al.  A metal-complex-tolerant CuAAC 'click' protocol exemplified through the preparation of homo- and mixed-metal-coordinated [2]rotaxanes. , 2007, Chemical communications.

[28]  M. Jennings,et al.  [2]Pseudorotaxane and [2]rotaxane molecular shuttles: self-assembly through second-sphere coordination of thiocyanate ligands. , 2007, Inorganic chemistry.

[29]  Yi‐Hung Liu,et al.  Using acetate anions to induce translational isomerization in a neutral urea-based molecular switch. , 2007, Angewandte Chemie.

[30]  P. Beer,et al.  Interweaving anion templation. , 2007, Accounts of chemical research.

[31]  M. Jennings,et al.  Reversible formation of a [2]catenane through first- and second-sphere coordination. , 2007, Angewandte Chemie.

[32]  P. Beer,et al.  Strategic anion templation , 2006 .

[33]  M. Jennings,et al.  Synthesis of a [2]rotaxane through first- and second-sphere coordination. , 2006, Chemical communications.

[34]  Bradley D. Smith,et al.  Squaraine-derived rotaxanes: highly stable, fluorescent near-IR dyes. , 2006, Chemistry.

[35]  P. Beer,et al.  Anion-templated assembly of [2]rotaxanes. , 2006, Organic & biomolecular chemistry.

[36]  A. Marinetti,et al.  Phosphorus-containing [2]catenanes as an example of interlocking chiral structures. , 2006, Angewandte Chemie.

[37]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[38]  T. Murai,et al.  Optically active P-chiral phosphinoselenoic amides: stereochemical outcome at the P-stereogenic center in the synthesis of these substances and their characterization , 2005 .

[39]  Bradley D. Smith,et al.  Improving the Properties of Organic Dyes by Molecular Encapsulation , 2005 .

[40]  Francesco Zerbetto,et al.  Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. , 2005, Angewandte Chemie.

[41]  M. Jennings,et al.  [2]Pseudorotaxanes through second-sphere coordination. , 2005, Angewandte Chemie.

[42]  Bradley D. Smith,et al.  Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. , 2005, Journal of the American Chemical Society.

[43]  A. Slawin,et al.  Preparation and Coordination Chemistry of n-Allylaminophosphane , 2005 .

[44]  A. Slawin,et al.  Synthesis and coordination of 2-diphenylphosphinopicolinamide , 2004 .

[45]  P. Beer,et al.  Anion-templated assembly of a [2]catenane. , 2004, Journal of the American Chemical Society.

[46]  P. Hitchcock,et al.  Self-organisation in P-substituted guanidines leading to solution-state isomerisation. , 2004, Chemical communications.

[47]  Andrew J. Wilson,et al.  The mechanism of formation of amide-based interlocked compounds: prediction of a new rotaxane-forming motif. , 2004, Chemistry.

[48]  C. Hunter,et al.  Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.

[49]  B. Baytekin,et al.  Theory and experiment in concert: templated synthesis of amide rotaxanes, catenanes, and knots. , 2004, Chemistry.

[50]  B. Lipshutz,et al.  Copper(I)-catalyzed asymmetric hydrosilylations of imines at ambient temperatures. , 2004, Angewandte Chemie.

[51]  C. Schalley,et al.  Deslipping of Ester Rotaxanes: A Cooperative Interplay of Hydrogen Bonding with Rotational Barriers , 2003 .

[52]  Qi‐Lin Zhou,et al.  Asymmetric borane reduction of prochiral ketones catalyzed by phosphinamides prepared from L‐serine , 2003 .

[53]  F. J. Luque,et al.  Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation. , 2003, The Journal of organic chemistry.

[54]  A. Slawin,et al.  Preparation and coordination chemistry of Ph2PNHNHpy , 2003 .

[55]  Andrew J. Wilson,et al.  "Magic rod" rotaxanes: the hydrogen bond-directed synthesis of molecular shuttles under thermodynamic control. , 2003, Organic letters.

[56]  Masato Suzuki,et al.  Catalytic enantioselective Strecker reaction of ketoimines. , 2003, Journal of the American Chemical Society.

[57]  Maurizio Prato,et al.  Hydrogen bond-assembled fullerene molecular shuttle. , 2003, Organic letters.

[58]  P. Ortiz de Montellano,et al.  1H NMR detection of immobilized water molecules within a strong distal hydrogen-bonding network of substrate-bound human heme oxygenase-1. , 2002, Journal of the American Chemical Society.

[59]  Christoph A Schalley,et al.  Novel template effect for the preparation of [2]rotaxanes with functionalised centre pieces. , 2002, Chemical communications.

[60]  P. Beer,et al.  Anion-templated rotaxane formation. , 2002, Journal of the American Chemical Society.

[61]  C. Kubiak,et al.  Chiral sulfur diphosphazanes derived from S-(Ph2P)2N(CHMePh) and its rhodium(I), (III) and iridium(III) complexes. Crystal structures of Ph2P(S)N(CHMePh)PPh2, {Ph2P(S)}2N(CHMePh) and [(Cp*)MCl{η2-P, S-Ph2PNHP(S)Ph2}]BF4, Cp* = η5-C5Me5; M = Rh, Ir , 2002 .

[62]  T. Lobana,et al.  Metal–selenium interactions: synthesis and crystal structure of an unusual coordination polymer [tetraiodo-bis{1,2-bis(diphenylselenophosphinyl)ethane}tetracopper(I)]n , 2002 .

[63]  J. Marek,et al.  New mixed-donor unsymmetrical P–N–P ligands and their palladium(II) complexes , 2001 .

[64]  S. Nepogodiev,et al.  Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. , 2001, Journal of the American Chemical Society.

[65]  Michael H. Abraham,et al.  Hydrogen bond structural group constants. , 2001, The Journal of organic chemistry.

[66]  A. Slawin,et al.  Bridge cleavage of [{PhP(Se)(μ-Se)}2] by 1,2-C6H4(EH)(E′H) (E, E′=O or NH). X-ray crystal structure of PhP(Se)(NHC6H4NH-1,2) , 2001 .

[67]  A. Slawin,et al.  The preparation and coordination chemistry of R2P(S)NHP(S)R′2 (R and R′=iPr, Ph, Et, OEt or OPh) , 2001 .

[68]  Francesco Zerbetto,et al.  Influencing intramolecular motion with an alternating electric field , 2000, Nature.

[69]  Stoddart,et al.  Toward Daisy Chain Polymers: "Wittig Exchange" of Stoppers in , 2000, Organic letters.

[70]  M. Shi,et al.  Chiral diphenylthiophosphoramides: a new class of chiral ligands for the silver(I)-promoted enantioselective allylation of aldehydes , 2000 .

[71]  M. Shi,et al.  Chiral diphenylselenophosphoramides; a new class of chiral ligands for the titanium (IV) alkoxide-promoted addition of diethylzinc to aldehydes , 2000 .

[72]  A. Slawin,et al.  THE PREPARATION AND COORDINATION CHEMISTRY OF IPR2P(E)NHP(E')IPR2 (E, E' =SE; E = SE, E' = S; E = S, E' = O; E, E' = O , 1999 .

[73]  David A. Leigh,et al.  “Smart” Rotaxanes: Shape Memory and Control in Tertiary Amide Peptido[2]rotaxanes , 1999 .

[74]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[75]  Fritz Vögtle,et al.  A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .

[76]  Alexandra M. Z. Slawin,et al.  Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .

[77]  David A. Leigh,et al.  The Synthesis and Solubilization of Amide Macrocycles via Rotaxane Formation , 1996 .

[78]  Kurt Wüthrich,et al.  Hydration and DNA Recognition by Homeodomains , 1996, Cell.

[79]  David A. Leigh,et al.  Facile Synthesis and Solid-State Structure of a Benzylic Amide [2]Catenane† , 1995 .

[80]  David A. Leigh,et al.  Structurally Diverse and Dynamically Versatile Benzylic Amide [2]Catenanes Assembled Directly from Commercially Available Precursors , 1995 .

[81]  F. Vögtle,et al.  TEMPLATE SYNTHESIS OF THE FIRST AMIDE-BASED ROTAXANES , 1995 .

[82]  O. Navratil,et al.  The Tetraphenylester of the μ-Imido-Dithiodiphosphoric Acid and its palladium complex — crystal structures , 1993 .

[83]  G. Otting,et al.  NMR Detection of Hydration Water in the Intermolecular Interface of a Protein-DNA Complex. , 1993 .

[84]  F. Vögtle,et al.  One‐Step Synthesis of a Fourfold Functionalized Catenane , 1992 .

[85]  C. Hunter Synthesis and structure elucidation of a new [2]-catenane , 1992 .

[86]  A. Norman,et al.  Intermediates in the 1,2-diaminobenzene/tris(diethylamino)phosphine transamination reaction , 1990 .

[87]  R. Taft,et al.  Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase , 1988 .

[88]  Michael H. Abraham,et al.  A general treatment of hydrogen bond complexation constants in tetrachloromethane , 1988 .

[89]  J. F. Nixon,et al.  The crystal and molecular structure of a versatile bidentate ligand: tetraphenyldithioimidodiphosphinate, Ph2(S)P -NH-P(S)Ph2 , 1985 .

[90]  P. Kollman,et al.  Amide-water hydrogen bonding , 1972 .

[91]  Bradley D. Smith,et al.  Efficient synthesis of fluorescent squaraine rotaxane dendrimers. , 2010, Organic letters.

[92]  D. Leigh,et al.  Amide-based molecular shuttles (2001-2006) , 2007 .

[93]  M. Foreman,et al.  The synthesis and characterization of N -(diphenylthiophosphinyl)- P -phenyl-thiophosphonamidic acid phenyl ester and related compounds chiral at phosphorus , 2001 .

[94]  A. Slawin,et al.  Novel chiral phosphine ligands and complexes from amino acid esters , 2001 .

[95]  A. Slawin,et al.  Synthesis and structure of platinum(II) complexes with mixed Ph2PNHP(O)Ph2/[Ph2PNP(O)Ph2]− or Ph2PC6H4NH2/[Ph2PC6H4NH]− hybrid ligands: new M–P–N–H···N–P metallacycles , 2000 .

[96]  A. Slawin,et al.  The co-ordination chemistry of 2-(diphenylphosphinoamino)pyridine , 2000 .

[97]  A. Slawin,et al.  Synthesis and Structural Studies of [(H2NPPh2)2N]+ [N{P(S)Ph2}2]− , 2000 .

[98]  A. Slawin,et al.  Palladium(II) and Platinum(II) Complexes of the Heterodifunctional Ligand Ph2PNHP(O)Ph2 , 1996 .

[99]  David J. Williams,et al.  Bis(bidentate) complexes of iminobis(diphenylphosphine chalcogenides)[M{N(XPPh2)2-X,X′}2](X = S or Se; M = Ni, Pd or Pt) , 1995 .

[100]  T. Østvold,et al.  The crystal structure of imidotetraphenyldithiodiphosphinic acid, a compound with an N-H... S hydrogen bond , 1983 .