Optimizing QAOA: Success Probability and Runtime Dependence on Circuit Depth

The quantum approximate optimization algorithm~(QAOA) first proposed by Farhi et al. promises near-term applications based on its simplicity, universality, and provable optimality. A depth-p QAOA consists of p interleaved unitary transformations induced by two mutually non-commuting Hamiltonians. A long-standing question concerning the performance of QAOA is the dependence of its success probability as a function of circuit depth p. We make initial progress by analyzing the success probability of QAOA for realizing state transfer in a one-dimensional qubit chain using two-qubit XY Hamiltonians and single-qubit Hamiltonians. We provide analytic state transfer success probability dependencies on p in both low and large p limits by leveraging the unique spectral property of the XY Hamiltonian. We support our proof under a given QAOA ansatz with numerical optimizations of QAOA for up to \(N\)=20 qubits. We show that the optimized QAOA can achieve the well-known quadratic speedup, Grover speedup, over the classical alternatives. Treating QAOA optimization as a quantum control problem, we also provide numerical evidence of how the circuit depth determines the controllability of the QAOA ansatz.

[1]  A V Gorshkov,et al.  Robust quantum state transfer in random unpolarized spin chains. , 2010, Physical review letters.

[2]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[3]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[4]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[5]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[6]  J. Eisert,et al.  Information propagation through quantum chains with fluctuating disorder , 2008, 0809.4833.

[7]  M. B. Hastings,et al.  Locality in Quantum Systems , 2010, 1008.5137.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Leo Zhou,et al.  Computational complexity of the Rydberg blockade in two dimensions , 2018, ArXiv.

[10]  Timothy H. Hsieh,et al.  Ultrafast State Preparation via the Quantum Approximate Optimization Algorithm with Long Range Interactions , 2018, 1810.04817.

[11]  H. Rabitz,et al.  Quantum Control Landscapes Are Almost Always Trap Free , 2016, 1608.06198.

[12]  Daniel A. Lidar,et al.  Accuracy versus run time in an adiabatic quantum search , 2010, 1008.0863.

[13]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[14]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[15]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[16]  Hartmut Neven,et al.  Nonergodic Delocalized States for Efficient Population Transfer within a Narrow Band of the Energy Landscape , 2018, Physical Review X.

[17]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[18]  B. Shao,et al.  Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains , 2016 .

[19]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[20]  H. Rabitz,et al.  Singularities of quantum control landscapes , 2009, 0907.2354.

[21]  E. Solano,et al.  Digital Quantum Simulation of Spin Systems in Superconducting Circuits , 2013, 1311.7626.

[22]  J. Gong,et al.  Adiabatic quantum transport in a spin chain with a moving potential , 2007, 0712.1628.

[23]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[24]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[25]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[26]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[27]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[28]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2018, Science.

[29]  H. Rabitz,et al.  Role of controllability in optimizing quantum dynamics , 2009, 0910.4702.

[30]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[31]  Tao Chen,et al.  Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. , 2018, 1806.03886.

[32]  Tobias J Osborne,et al.  Bounds on the speed of information propagation in disordered quantum spin chains. , 2007, Physical review letters.

[33]  S. Lloyd Quantum approximate optimization is computationally universal , 2018, 1812.11075.

[34]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[35]  F. Brandão,et al.  For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances , 2018, 1812.04170.

[36]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[37]  Stuart Hadfield,et al.  The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View , 2017, 1706.02998.