On the convergence of monotone schemes for path-dependent PDE

We propose a reformulation of the convergence theorem of monotone numerical schemes introduced by Zhang and Zhuo for viscosity solutions of path-dependent PDEs, which extends the seminal work of Barles and Souganidis on the viscosity solution of PDE. We prove the convergence theorem under conditions similar to those of the classical theorem in the work of Barles and Souganidis. These conditions are satisfied, to the best of our knowledge, by all classical monotone numerical schemes in the context of stochastic control theory. In particular, the paper provides a unified approach to prove the convergence of numerical schemes for non-Markovian stochastic control problems, second order BSDEs, stochastic differential games etc.

[1]  Jia Zhuo,et al.  Monotone schemes for fully nonlinear parabolic path dependent PDEs , 2014, 1402.3930.

[2]  Xiaolu Tan,et al.  A Numerical Algorithm for a Class of BSDE Via Branching Process , 2013 .

[3]  Nizar Touzi,et al.  On viscosity solutions of path dependent PDEs , 2011, 1109.5971.

[4]  Anis Matoussi,et al.  ROBUST UTILITY MAXIMIZATION IN NONDOMINATED MODELS WITH 2BSDE: THE UNCERTAIN VOLATILITY MODEL , 2015 .

[5]  H. Pham,et al.  Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps , 2013, 1311.4505.

[6]  N. Touzi,et al.  An overview of Viscosity Solutions of Path-Dependent PDEs , 2014, 1408.5267.

[7]  Y. Dolinsky Numerical schemes for G-Expectations , 2011, 1109.3430.

[8]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[9]  J. Frédéric Bonnans,et al.  A fast algorithm for the two dimensional HJB equation of stochastic control , 2004 .

[10]  Xiaolu Tan,et al.  A splitting method for fully nonlinear degenerate parabolic PDEs , 2013 .

[11]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[12]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[13]  Xiaolu Tan,et al.  A numerical algorithm for a class of BSDEs via branching process , 2013 .

[14]  Jianfeng Zhang,et al.  Two Person Zero-Sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation , 2012, SIAM J. Control. Optim..

[15]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[16]  Nizar Touzi,et al.  Optimal Stopping under Nonlinear Expectation , 2012, 1209.6601.

[17]  Xiaolu Tan,et al.  Weak approximation of second-order BSDEs. , 2013, 1310.1173.

[18]  Nizar Touzi,et al.  A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.

[19]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[20]  N. Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.

[21]  Zhenjie Ren Viscosity Solutions of Fully Nonlinear Elliptic Path Dependent PDEs , 2014, 1401.5210.

[22]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[23]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[24]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[25]  Xiaolu Tan,et al.  Discrete-time probabilistic approximation of path-dependent stochastic control problems , 2014, 1407.0499.

[26]  Zhenjie Ren,et al.  Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs , 2015, SIAM J. Math. Anal..

[27]  Kristian Debrabant,et al.  Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..

[28]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[29]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[30]  Jia Zhuo,et al.  A monotone scheme for high-dimensional fully nonlinear PDEs , 2012, 1212.0466.

[31]  A. Sakhanenko A New Way to Obtain Estimates in the Invariance Principle , 2000 .

[32]  Pierre Henry-Labordere,et al.  Uncertain Volatility Model: A Monte-Carlo Approach , 2010 .

[33]  B. Bouchard,et al.  Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .