On the convergence of monotone schemes for path-dependent PDE
暂无分享,去创建一个
[1] Jia Zhuo,et al. Monotone schemes for fully nonlinear parabolic path dependent PDEs , 2014, 1402.3930.
[2] Xiaolu Tan,et al. A Numerical Algorithm for a Class of BSDE Via Branching Process , 2013 .
[3] Nizar Touzi,et al. On viscosity solutions of path dependent PDEs , 2011, 1109.5971.
[4] Anis Matoussi,et al. ROBUST UTILITY MAXIMIZATION IN NONDOMINATED MODELS WITH 2BSDE: THE UNCERTAIN VOLATILITY MODEL , 2015 .
[5] H. Pham,et al. Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps , 2013, 1311.4505.
[6] N. Touzi,et al. An overview of Viscosity Solutions of Path-Dependent PDEs , 2014, 1408.5267.
[7] Y. Dolinsky. Numerical schemes for G-Expectations , 2011, 1109.3430.
[8] B. Bouchard,et al. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .
[9] J. Frédéric Bonnans,et al. A fast algorithm for the two dimensional HJB equation of stochastic control , 2004 .
[10] Xiaolu Tan,et al. A splitting method for fully nonlinear degenerate parabolic PDEs , 2013 .
[11] H. Kushner. Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .
[12] Jianfeng Zhang. A numerical scheme for BSDEs , 2004 .
[13] Xiaolu Tan,et al. A numerical algorithm for a class of BSDEs via branching process , 2013 .
[14] Jianfeng Zhang,et al. Two Person Zero-Sum Game in Weak Formulation and Path Dependent Bellman-Isaacs Equation , 2012, SIAM J. Control. Optim..
[15] Shige Peng,et al. Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.
[16] Nizar Touzi,et al. Optimal Stopping under Nonlinear Expectation , 2012, 1209.6601.
[17] Xiaolu Tan,et al. Weak approximation of second-order BSDEs. , 2013, 1310.1173.
[18] Nizar Touzi,et al. A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.
[19] E. Gobet,et al. A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.
[20] N. Touzi,et al. Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.
[21] Zhenjie Ren. Viscosity Solutions of Fully Nonlinear Elliptic Path Dependent PDEs , 2014, 1401.5210.
[22] Bruno Dupire,et al. Functional Itô Calculus , 2009 .
[23] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[24] Nizar Touzi,et al. Wellposedness of second order backward SDEs , 2010, 1003.6053.
[25] Xiaolu Tan,et al. Discrete-time probabilistic approximation of path-dependent stochastic control problems , 2014, 1407.0499.
[26] Zhenjie Ren,et al. Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs , 2015, SIAM J. Math. Anal..
[27] Kristian Debrabant,et al. Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..
[28] H. Soner,et al. Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.
[29] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.
[30] Jia Zhuo,et al. A monotone scheme for high-dimensional fully nonlinear PDEs , 2012, 1212.0466.
[31] A. Sakhanenko. A New Way to Obtain Estimates in the Invariance Principle , 2000 .
[32] Pierre Henry-Labordere,et al. Uncertain Volatility Model: A Monte-Carlo Approach , 2010 .
[33] B. Bouchard,et al. Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .