Surface triple points and multiple-layer transitions observed by tuning the surface field at smectic liquid-crystal-water interfaces.

We present an ellipsometric study of the interface between a smectic liquid crystal and water in the presence of a nonionic surfactant. The surfactant concentration serves as a handle to tune the surface field. For sufficiently large surfactant concentrations, a smectic phase is present at the interface in the temperature range above the smectic-A-isotropic bulk transition; when the bulk transition is approached, the thickness of this surface phase grows via a series of layer-by-layer transitions at which single smectic layers are formed. At lower surfactant concentrations, transitions appear at which the thickness of the surface phase jumps by multiple smectic layers, thereby implying the existence of triple points at which surface phases with different smectic layer numbers coexist. This is the first experimental demonstration of such surface triple points which are predicted by theoretical models.