Piecewise Multilinear Sparse Grid Interpolation in MATLAB

To recover/approximate smooth multivariate functions, sparse grids are superior to full grids due to a significant reduction of the required support nodes. The order of the convergence rate in the maximum norm is hereby preserved up to a logarithmic factor. We describe three possible piecewise multilinear interpolation schemes in detail and conduct a numerical comparison. Furthermore, we summarize the features of our efficient and easy-to-use sparse grid interpolation software package spinterp for Matlab, which is available for free.

[1]  Barbara I. Wohlmuth,et al.  Mortar Finite Elements for Interface Problems , 2004, Computing.

[2]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[3]  A. Klimke Stuttgart Piecewise Multilinear Sparse Grid Interpolation in MATLAB , 2003 .

[4]  Frauke Sprengel,et al.  Periodic interpolation and wavelets on sparse grids , 1998, Numerical Algorithms.

[5]  F. Sprengel Interpolation and Wavelets on Sparse Gau?-Chebyshev Grids , 1996 .

[6]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[7]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[8]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[9]  Stefan Achatz Adaptive finite Dünngitter-Elemente höherer Ordnung für elliptische partielle Differentialgleichungen mit variablen Koeffizienten , 2003 .

[10]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[11]  Michael Hanss,et al.  On the reliability of the influence measure in the transformation method of fuzzy arithmetic , 2004, Fuzzy Sets Syst..

[12]  T. Merkle Phase separation in solid mixtures under elastic loadings with application to solder materials , 2003 .

[13]  N. S. Barnett,et al.  Private communication , 1969 .

[14]  Ulrich Langer,et al.  Workshop on Fast Boundary Element Methods in Industrial Applications , 2003 .

[15]  Hans-Joachim Bungartz,et al.  Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .