Visual sensitivity analysis of parametric design models: Improving agility in design

The advances of generative and parametric CAD tools have enabled designers to create designs representations that are responsive, adoptable and flexible. However, the complexity of the models and limitation of human-visual systems posed challenges in effectively utilizing them for sensitivity analysis. In this prototyping study, we propose a method that aims at reduction of these challenges. The method proposes to improve visually analysing sensitivity of a design model to changes. It adapts Model-View-Controller approach in software design to decouple control and visualization features from the design model while providing interfaces between them through parametric associations. The case studies is presented to demonstrate applicability and limitation of the method.

[1]  Wei Chen,et al.  A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design , 2007, DAC 2007.

[2]  Philipp Slusallek,et al.  Large-scale CAD Model Visualization on a Scalable Shared-memory Architecture , 2005 .

[3]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[4]  Ghang Lee,et al.  Parametric 3D modeling in building construction with examples from precast concrete , 2004 .

[5]  Sven P. Jacobsson,et al.  Algorithmic approaches for studies of variable influence, contribution and selection in neural networks , 2000 .

[6]  Rudi Stouffs Design spaces: The explicit representation of spaces of alternatives , 2006, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[7]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[8]  Stephen R. Mitroff,et al.  The Role of Expectations in Change Detection and Attentional Capture , 2001 .

[9]  Stefano Tarantola,et al.  Uncertainty and global sensitivity analysis of road transport emission estimates , 2004 .

[10]  Stefan Wagner,et al.  Cost optimisation of analytical software quality assurance , 2007 .

[11]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[12]  Dennis R. Shelden,et al.  A Parametric Strategy for Freeform Glass Structures Using Quadrilateral Planar Facets , 2004, ACADIA proceedings.

[13]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[14]  Clare Churcher,et al.  Interactive Visualization Techniques for Exploring Model Sensitivity , 2008 .

[15]  W. Geisler,et al.  Separation of low-level and high-level factors in complex tasks: visual search. , 1995, Psychological review.

[16]  Kyung K. Choi,et al.  A geometry-based parameterization method for shape design of elastic solids , 1992 .

[17]  C. Eastman,et al.  FUNCTIONAL MODELING IN PARAMETRIC CAD SYSTEMS , 2004 .

[18]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[19]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[20]  Cheryl Z. Qian Design patterns: augmenting user intention in parametric design systems , 2007, C&C '07.

[21]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[22]  H. Christopher Frey,et al.  Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs , 1999 .

[23]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[24]  K. Choi,et al.  A study of design velocity field computation for shape optimal design , 1994 .

[25]  Kyung K. Choi,et al.  A CAD-based design parameterization for shape optimization of elastic solids , 1999 .

[26]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[27]  Robert F. Woodbury,et al.  A typology of design space explorers , 2006, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[28]  William Buxton,et al.  Ten CAD challenges , 2005, IEEE Computer Graphics and Applications.

[29]  Jack P. C. Kleijnen,et al.  A methodology for fitting and validating metamodels in simulation , 2000, Eur. J. Oper. Res..

[30]  Stephen L. Burbeck,et al.  Applications programming in smalltalk-80: how to use model-view-controller (mvc) , 1987 .

[31]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[32]  Jean-Pascal Benassy The Role of Expectations , 1986 .

[33]  Dirk Walther,et al.  Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics. , 2006 .

[34]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[35]  H Christopher Frey,et al.  OF SENSITIVITY ANALYSIS , 2001 .

[36]  M. L. Mitchell,et al.  Visual Explanations: Images and Quantities, Evidence and Narrative , 1997 .

[37]  Charles M. Eastman,et al.  BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors , 2008 .

[38]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[39]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[40]  Colin Ware,et al.  Visual Thinking for Design , 2008 .

[41]  Robert Aish,et al.  Multi-level Interaction in Parametric Design , 2005, Smart Graphics.

[42]  HALIL I. ERHAN,et al.  USER-SYSTEM INTERACTION DESIGN FOR REQUIREMENTS MODELLING , 2005 .

[43]  Nada BATES-BRKLJAC,et al.  Issues in use of computer visualisation of large-scale urban developments as planning support tools , 2007 .

[44]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[45]  Jeremy M Wolfe,et al.  Visual Attention , 2020, Computational Models for Cognitive Vision.

[46]  Gary R. Bertoline,et al.  Engineering Graphics Communication , 1995 .

[47]  D Fraedrich,et al.  A methodological framework for the validation of predictive simulations , 2000, Eur. J. Oper. Res..

[48]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[49]  David Salomon,et al.  Curves and surfaces for computer graphics , 2005 .

[50]  Nada Bates-Brkljac Investigating perceptual responses and shared understanding of architectural design ideas when communicated through different forms of visual representations , 2007, 2007 11th International Conference Information Visualization (IV '07).

[51]  T. Green,et al.  Key Criteria and Selection of Sensitivity Analysis Methods Applied to Natural Resource Models , 2005 .

[52]  Jon Trinder,et al.  The Humane Interface: New Directions for Designing Interactive Systems , 2002, Interact. Learn. Environ..

[53]  L. Wasserman,et al.  Local sensitivity diagnostics for Bayesian inference , 1995 .

[54]  D. Simons In Sight, Out of Mind: When Object Representations Fail , 1996 .

[55]  C. Jiang,et al.  Shadow identification , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Ben Shneiderman,et al.  Creativity support tools: accelerating discovery and innovation , 2007, CACM.

[57]  Carlos Roberto Barrios Hernandez,et al.  Thinking parametric design: introducing parametric Gaudi , 2006 .

[58]  K. R. Williams COMPARING SCREENING DESIGNS , 1963 .

[59]  Allen Allport,et al.  Visual attention , 1989 .

[60]  Z W Pylyshyn,et al.  Tracking multiple independent targets: evidence for a parallel tracking mechanism. , 1988, Spatial vision.

[61]  Lorie M. Liebrock,et al.  Empirical sensitivity analysis for computational procedures , 2005, 2005 Richard Tapia Celebration of Diversity in Computing Conference.

[62]  Masaki Suwa,et al.  Unexpected discoveries and S-invention of design requirements , 2000 .

[63]  B. Chandrasekaran,et al.  An Architecture for Problem Solving with Diagrams , 2004, Diagrams.

[64]  Z W Pylyshyn,et al.  Searching through subsets: a test of the visual indexing hypothesis. , 1997, Spatial vision.

[65]  H. Künsch,et al.  Practical identifiability analysis of large environmental simulation models , 2001 .