Stabilization of a layered piezoelectric 3-D body by boundary dissipation

We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided some geometric conditions on the region and the interfaces hold. We also assume a monotonicity condition on the coefficients. As an application, we deduce exact controllability of the system with boundary control via a classical result due to Russell.

[1]  A. Pazy On the Applicability of Lyapunov’s Theorem in Hilbert Space , 1972 .

[2]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[3]  D. Russell,et al.  The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region , 1986 .

[4]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[5]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[6]  A. Eringen,et al.  Kinematics of Material Continua , 1990 .

[7]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[8]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[9]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[10]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[11]  John E. Lagnese,et al.  Boundary controllability in problems of transmission for a class of second order hyperbolic systems , 1997 .

[12]  Enrique Zuazua,et al.  Decay Rates for the Three‐Dimensional Linear System of Thermoelasticity , 1999 .

[13]  B. Miara Contrôlabilité d'un corps piézoélectrique , 2001 .

[14]  G. Lebeau,et al.  Mesures de défaut de compacité, application au système de Lamé , 2001 .

[15]  B. Kapitonov,et al.  Energy decay and a transmission problem in electromagneto-elasticity , 2002 .

[16]  Gen Nakamura,et al.  Well-Posedness of Initial-Boundary Value Problems for Piezoelectric Equations , 2002 .

[17]  Bernadette Miara,et al.  Boundary Observation and Exact Control of a Quasi-electrostatic Piezoelectric System in Multilayered Media , 2007, SIAM J. Control. Optim..