On the importance of wind turbine wake boundary to wind energy and environmental impact

[1]  Wenhao Xu,et al.  A novel integrated approach for offshore wind power optimization , 2022, Ocean Engineering.

[2]  F. G. Nielsen,et al.  Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar , 2022, Wind Energy Science.

[3]  Z. Liu,et al.  A brief discussion on offshore wind turbine hydrodynamics problem , 2022, Journal of Hydrodynamics.

[4]  Guo Nai-Zhi,et al.  A data-driven analytical model for wind turbine wakes using machine learning method , 2022, Energy Conversion and Management.

[5]  Reza Nouri,et al.  Wind turbine wake control strategies: A review and concept proposal , 2021 .

[6]  Xiaobo Zheng,et al.  Characteristics of vortex shedding from a sinusoidally pitching hydrofoil at high Reynolds number , 2021, Physical Review Fluids.

[7]  Enrico G. A. Antonini,et al.  Spatial constraints in large-scale expansion of wind power plants , 2021, Proceedings of the National Academy of Sciences.

[8]  Jun Zhao,et al.  A novel technique for ship wake detection from optical images , 2021 .

[9]  T. Ishihara,et al.  Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity , 2021, Energy.

[10]  Tongguang Wang,et al.  Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions , 2021, Renewable Energy.

[11]  M. Jacobson,et al.  Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide , 2021 .

[12]  Zhiteng Gao,et al.  Experimental investigation of solidity and other characteristics on dual vertical axis wind turbines in an urban environment , 2021 .

[13]  C. L. Archer,et al.  The Coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines , 2020 .

[14]  Ye Li,et al.  Extended Environmental Contour Methods for Long-Term Extreme Response Analysis of Offshore Wind Turbines1 , 2020 .

[15]  Tongguang Wang,et al.  Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation , 2020 .

[16]  Hongxing Yang,et al.  Experimental study on wind speeds in a complex-terrain wind farm and analysis of wake effects , 2020, Applied Energy.

[17]  G. Gualtieri Comparative analysis and improvement of grid-based wind farm layout optimization , 2020 .

[18]  J. Madsen,et al.  Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models , 2020 .

[19]  A. Peña,et al.  Lidar Scanning of Induction Zone Wind Fields over Sloping Terrain , 2020, Journal of Physics: Conference Series.

[20]  M. Debnath,et al.  Comparison of Rotor Wake Identification and Characterization Methods for the Analysis of Wake Dynamics and Evolution , 2020, Journal of Physics: Conference Series.

[21]  Aliza Abraham,et al.  Dynamic wake modulation induced by utility-scale wind turbine operation , 2019, Applied Energy.

[22]  Zilong Ti,et al.  Wake modeling of wind turbines using machine learning , 2020 .

[23]  Ye Li,et al.  Advanced flow and noise simulation method for wind farm assessment in complex terrain , 2019 .

[24]  J. Peinke,et al.  Grand challenges in the science of wind energy , 2019, Science.

[25]  P. Zeng,et al.  Experimental investigation of the power performance of a minimal wind turbine array in an atmospheric boundary layer wind tunnel , 2019, Energy Conversion and Management.

[26]  Vikrant Gupta,et al.  Low-order modelling of wake meandering behind turbines , 2019, Journal of Fluid Mechanics.

[27]  K. Hansen,et al.  Full-scale 3D remote sensing of wake turbulence - a taster , 2019, Journal of Physics: Conference Series.

[28]  Yongqian Liu,et al.  A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes , 2019, Applied Energy.

[29]  Ye Li,et al.  An Optimization Framework for Wind Farm Design in Complex Terrain , 2018, Applied Sciences.

[30]  A. E. Maguire,et al.  Review and evaluation of wake loss models for wind energy applications , 2018, Applied Energy.

[31]  Farschad Torabi,et al.  Modeling of horizontal axis wind turbine wakes in Horns Rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic , 2018, Energy Conversion and Management.

[32]  R. Barthelmie,et al.  The Influence of Real‐World Wind Turbine Deployments on Local to Mesoscale Climate , 2018, Journal of Geophysical Research: Atmospheres.

[33]  J. Mann,et al.  Synchronized agile beam scanning of coherent continuous-wave doppler lidars for high-resolution wind field characterization , 2018 .

[34]  Wen Zhong Shen,et al.  Effects of wind turbine wake on atmospheric sound propagation , 2017 .

[35]  T. Herges,et al.  High resolution wind turbine wake measurements with a scanning lidar , 2017 .

[36]  Charles Meneveau,et al.  Flow Structure and Turbulence in Wind Farms , 2017 .

[37]  Torben Mikkelsen,et al.  Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment , 2016 .

[38]  Longyan Wang,et al.  Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights , 2016 .

[39]  Chang Xu,et al.  Wind turbine wake measurement in complex terrain , 2016 .

[40]  Andrew Swift,et al.  Characterizing power performance and wake of a wind turbine under yaw and blade pitch , 2016 .

[41]  R. B. Cal,et al.  Vortex Identification in the Wake of a Wind Turbine Array , 2014 .

[42]  Nikolas Angelou,et al.  Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars , 2016 .

[43]  Bum-Suk Kim,et al.  Comparison and verification of wake models in an onshore wind farm considering single wake condition of the 2 MW wind turbine , 2015 .

[44]  Fernando Porté-Agel,et al.  A new analytical model for wind farm power prediction , 2015 .

[45]  Peter A. N. Bosman,et al.  Wake losses optimization of offshore wind farms with moveable floating wind turbines , 2015 .

[46]  Kathryn E. Johnson,et al.  Evaluating techniques for redirecting turbine wakes using SOWFA , 2014 .

[47]  Qi Wang,et al.  Three-dimensional numerical analysis on blade response of a vertical-axis tidal current turbine under operational conditions , 2014 .

[48]  Ye Li,et al.  On the definition of the power coefficient of tidal current turbines and efficiency of tidal current turbine farms , 2014 .

[49]  Julie K. Lundquist,et al.  Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data , 2014 .

[50]  Torben Mikkelsen,et al.  Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering , 2014 .

[51]  Mijin Choi,et al.  On damage diagnosis for a wind turbine blade using pattern recognition , 2014 .

[52]  Per-Åge Krogstad,et al.  “Blind test” calculations of the performance and wake development for a model wind turbine , 2013 .

[53]  Achille Messac,et al.  Impact of Different Wake Models On the Estimation of Wind Farm Power Generation , 2012 .

[54]  C. L. Archer,et al.  Saturation wind power potential and its implications for wind energy , 2012, Proceedings of the National Academy of Sciences.

[55]  C. Hanning,et al.  Effects of industrial wind turbine noise on sleep and health. , 2012, Noise & health.

[56]  Jens Nørkær Sørensen,et al.  Actuator line/Navier–Stokes computations for the MEXICO rotor: comparison with detailed measurements , 2012 .

[57]  Liming Zhou,et al.  Impacts of wind farms on land surface temperature , 2012 .

[58]  S. Loyer,et al.  Spatial study of the wake meandering using modelled wind turbines in a wind tunnel , 2011 .

[59]  Muyiwa S. Adaramola,et al.  Experimental investigation of wake effects on wind turbine performance , 2011 .

[60]  Somnath Baidya Roy,et al.  Impacts of wind farms on surface air temperatures , 2010, Proceedings of the National Academy of Sciences.

[61]  Rebecca J. Barthelmie,et al.  Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm , 2010 .

[62]  E. Migoya,et al.  Application of a LES technique to characterize the wake deflection of a wind turbine in yaw , 2009 .

[63]  C. Chou,et al.  A revised accumulated cyclone energy index , 2009 .

[64]  Torben Mikkelsen,et al.  Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar , 2009 .

[65]  Torben Mikkelsen,et al.  Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars , 2008 .

[66]  Rebecca J. Barthelmie,et al.  Analytical modelling of wind speed deficit in large offshore wind farms , 2006 .

[67]  David W Keith,et al.  The influence of large-scale wind power on global climate. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Moin,et al.  A General Class of Commutative Filters for LES in Complex Geometries , 1998 .

[69]  B. Geurts,et al.  Large-eddy simulation of the turbulent mixing layer , 1997, Journal of Fluid Mechanics.

[70]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .