Novel highly ordered core–shell nanoparticles

[1]  Shuyan Song,et al.  CeO2‐Encapsulated Noble Metal Nanocatalysts: Enhanced Activity and Stability for Catalytic Application , 2016 .

[2]  M. Benamara,et al.  Structural and Magnetic Properties of Well-Ordered Inverted Core-Shell α-Cr_2O_3/ α-M_xCr_2-xO_3 (M=Co, Ni, Mn, Fe) Nanoparticles , 2016 .

[3]  Dayne F. Swearer,et al.  From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties , 2015, Science Advances.

[4]  R. Zbořil,et al.  Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. , 2015, Chemical Society reviews.

[5]  V. Tsiantos,et al.  Shape-dependent exchange bias effect in magnetic nanoparticles with core-shell morphology , 2015, 1508.01831.

[6]  K. Trohidou,et al.  Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles , 2015, Scientific Reports.

[7]  C. Carvallo,et al.  Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. , 2014, Nanoscale.

[8]  B. Rodríguez-González,et al.  Exchange Bias Effect in CoO@Fe3O4 Core–Shell Octahedron-Shaped Nanoparticles , 2014 .

[9]  G. Salazar-Alvarez,et al.  Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles , 2014, 1406.3966.

[10]  S. Pinitsoontorn,et al.  Structure and Magnetic Properties of Monodisperse Fe3+-doped CeO2 Nanospheres , 2013 .

[11]  Hao Yan,et al.  In situ monitoring of the adsorption of Co2+ on the surface of Fe3O4 nanoparticles in high-temperature aqueous fluids , 2013 .

[12]  R. Dinnebier,et al.  Modern Rietveld Refinement, a Practical Guide , 2013 .

[13]  K. Trohidou,et al.  Mesoscopic Model for the Simulation of Large Arrays of Bi‐Magnetic Core/Shell Nanoparticles , 2012, Advanced materials.

[14]  G. Hadjipanayis,et al.  Spin dynamics and criteria for onset of exchange bias in superspin glass Fe/γ-Fe2O3 core-shell nanoparticles , 2012 .

[15]  Xiaozhi Zhan,et al.  Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Hao Yan,et al.  In Situ X-ray Absorption Spectroscopic Study of the Adsorption of Ni2+ on Fe3O4 Nanoparticles in Supercritical Aqueous Fluids , 2012 .

[17]  E. Egito,et al.  Magnetic Particles in Biotechnology: From Drug Targeting to Tissue Engineering , 2012 .

[18]  F. Farzaneh SYNTHESIS AND CHARACTERIZATION OF CR2O3 NANOPARTICLES WITH TRIETHANOLAMINE IN WATER UNDER MICROWAVE IRRADIATION , 2011 .

[19]  R. Chantrell,et al.  Influence of interfacial roughness on exchange bias in core-shell nanoparticles , 2011 .

[20]  N. Borys,et al.  The Role of Particle Morphology in Interfacial Energy Transfer in CdSe/CdS Heterostructure Nanocrystals , 2010, Science.

[21]  Jinlan Wang,et al.  Core-Shell Magnetic Nanoclusters , 2009 .

[22]  W. Schreiner,et al.  Dilute-defect magnetism: Origin of magnetism in nanocrystalline CeO2 , 2009 .

[23]  A. P. Sorini,et al.  Ab initio theory and calculations of X-ray spectra , 2009 .

[24]  G. Salazar-Alvarez,et al.  Magnetic proximity effect features in antiferromagnetic/ferrimagnetic core-shell nanoparticles. , 2009, Physical review letters.

[25]  C. Sangregorio,et al.  A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni)” , 2009 .

[26]  J. Sort,et al.  Shell-driven magnetic stability in core-shell nanoparticles. , 2006, Physical review letters.

[27]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[28]  X. Zhao,et al.  Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles , 2005 .

[29]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[30]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[31]  A. Fowler,et al.  Oscillatory zoning in minerals; a common phenomenon , 1996 .

[32]  A. Jephcoat,et al.  A correction for powder diffraction peak asymmetry due to axial divergence , 1994 .

[33]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[34]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[35]  Lars Hedin,et al.  Explicit local exchange-correlation potentials , 1971 .

[36]  Hao Yan,et al.  Investigations of TiO 2 Nanoparticles Surface-Doped with Eu in Aqueous Fluids to High P-T Conditions , 2013 .

[37]  Hao Yan,et al.  In situ XANES Study of Co 2+ Ion Adsorption on Fe 3 O 4 Nanoparticles in Supercritical Aqueous Fluids , 2012 .

[38]  Chaodi Xu,et al.  In situ controllable synthesis of Ag@AgCl core–shell nanoparticles on graphene oxide sheets , 2012, Journal of Materials Science.

[39]  D. Balzar,et al.  Size–strain line-broadening analysis of the ceria round-robin sample , 2004 .

[40]  B. Jamtveit Crystal Growth and Intracrystalline Zonation Patterns in Hydrothermal Environments , 1999 .

[41]  A. A. Coelho Applied Crystallography Indexing of Powder Diffraction Patterns by Iterative Use of Singular Value Decomposition , 2022 .