Bounding the number of limit cycles for a polynomial Liénard system by using regular chains

Abstract In this paper, we study the bound of the number of limit cycles by Poincare bifurcation for a Lienard system of type ( 4 , 3 ) . An automatic algorithm is constructed based on the Chebyshev criteria and the tools of regular chain theory in polynomial algebra. We prove the system can bifurcate at most 6 limit cycles from the periodic annulus by this algorithm and at least 4 limit cycles by asymptotic expansions of the related Melnikov functions.

[1]  BIFURCATION OF LIMIT CYCLES IN SMALL PERTURBATIONS OF A CLASS OF HYPER-ELLIPTIC HAMILTONIAN SYSTEMS OF DEGREE 5 WITH A CUSP , 2011 .

[2]  V. I. Arnol'd,et al.  Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields , 1977 .

[3]  Hamid R. Z. Zangeneh,et al.  Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop (II) , 2008 .

[4]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[5]  S. Smale Mathematical problems for the next century , 1998 .

[6]  H. Zoladek,et al.  Eleven small limit cycles in a cubic vector field , 1995 .

[7]  Chengzhi Li,et al.  A cubic system with thirteen limit cycles , 2009 .

[8]  Maoan Han,et al.  Limit Cycles Near Homoclinic and Heteroclinic Loops , 2008 .

[9]  Xianbo Sun,et al.  Bifurcation of Limit Cycles in Small Perturbation of a Class of Liénard Systems , 2014, Int. J. Bifurc. Chaos.

[10]  Liqin Zhao The perturbations of a class of hyper-elliptic Hamilton systems with a double homoclinic loop through a nilpotent saddle , 2014 .

[11]  Moses O. Tadé,et al.  On the zeros of the Abelian integrals for a class of Liénard systems , 2006 .

[12]  Shijun Liao,et al.  Symbolic computation of strongly nonlinear periodic oscillations , 2013, J. Symb. Comput..

[13]  Freddy Dumortier,et al.  Perturbations from an Elliptic Hamiltonian of Degree Four , 2001 .

[14]  Chengzhi Li,et al.  Perturbation from an elliptic Hamiltonian of degree four—IV figure eight-loop , 2003 .

[15]  Valery G. Romanovski,et al.  Isochronicity and normal forms of polynomial systems of ODEs , 2012, J. Symb. Comput..

[16]  Pei Yu,et al.  Hopf bifurcations for Near-Hamiltonian Systems , 2009, Int. J. Bifurc. Chaos.

[17]  Dongmei Xiao,et al.  On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle , 2011 .

[18]  Valery G. Romanovski,et al.  The Sibirsky component of the center variety of polynomial differential systems , 2003, J. Symb. Comput..

[19]  Dongming Wang,et al.  Polynomial Systems from Certain Differential Equations , 1999, J. Symb. Comput..

[20]  Maoan Han Asymptotic expansions of Melnikov Functions and Limit Cycle bifurcations , 2012, Int. J. Bifurc. Chaos.

[21]  Ali Atabaigi,et al.  On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems , 2012 .

[22]  F. Mañosas,et al.  Bounding the number of zeros of certain Abelian integrals , 2011 .

[23]  Douglas S. Shafer,et al.  Symbolic computation and the cyclicity problem for singularities , 2012, J. Symb. Comput..

[24]  Changbo Chen,et al.  Algorithms for computing triangular decomposition of polynomial systems , 2012, J. Symb. Comput..

[25]  Changbo Chen,et al.  Real Root Isolation of Regular Chains , 2009, ASCM.

[26]  Freddy Dumortier,et al.  Perturbation from an elliptic Hamiltonian of degree four—III global centre , 2003 .

[27]  Hamid R. Z. Zangeneh,et al.  Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop , 2008 .

[28]  Jaume Giné,et al.  A necessary condition in the monodromy problem for analytic differential equations on the plane , 2006, J. Symb. Comput..

[29]  Dongming Wang,et al.  Stability analysis of biological systems with real solution classification , 2005, ISSAC.

[30]  Hamid R. Z. Zangeneh,et al.  Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop , 2010, Comput. Math. Appl..

[31]  Yang Lu Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .

[32]  Maite Grau,et al.  A Chebyshev criterion for Abelian integrals , 2008 .

[33]  Freddy Dumortier,et al.  Perturbations from an Elliptic Hamiltonian of Degree Four: I. Saddle Loop and Two Saddle Cycle☆ , 2001 .

[34]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[35]  Dongming Wang,et al.  Mechanical Manipulation for a Class of Differential Systems , 1991, J. Symb. Comput..

[36]  Xianbo Sun Bifurcation of limit cycles from a hyper-elliptic Hamiltonian system with a double heteroclinic loops , 2012 .

[37]  Changbo Chen,et al.  An Application of Regular Chain Theory to the Study of Limit cycles , 2013, Int. J. Bifurc. Chaos.