Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model

Recent advances in cosmic observations have brought us to the verge of discovery of the absolute scale of neutrino masses. Nonzero neutrino masses are known evidence of new physics beyond the Standard Model. Our understanding of the clustering of matter in the presence of massive neutrinos has significantly improved over the past decade, yielding cosmological constraints that are tighter than any laboratory experiment, and which will improve significantly over the next decade, resulting in a guaranteed detection of the absolute neutrino mass scale.

[1]  M. Loverde Spherical collapse in $\nu \Lambda$CDM , 2014, 1405.4858.

[2]  M. Agostini,et al.  Discovery probability of next-generation neutrinoless double- β decay experiments , 2017, 1705.02996.

[3]  M. Viel,et al.  Neutrino signatures on the high-transmission regions of the Lyman $\boldsymbol {\alpha }$ forest , 2011, 1106.2543.

[4]  Yu Feng,et al.  An efficient and accurate hybrid method for simulating non-linear neutrino structure , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[6]  Karsten M. Heeger,et al.  Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8 , 2017, 1703.02037.

[7]  David Alonso,et al.  Cosmic voids: a novel probe to shed light on our Universe. , 2019, 1903.05161.

[8]  Yong-Seon Song,et al.  Determining Neutrino Mass from the CMB Alone , 2003, astro-ph/0303344.

[9]  N. Battaglia The tau of galaxy clusters , 2016, 1607.02442.

[10]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[11]  M. Viel,et al.  The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.

[12]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[13]  L. Verde,et al.  BE-HaPPY: bias emulator for halo power spectrum including massive neutrinos , 2019, Journal of Cosmology and Astroparticle Physics.

[14]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  S. Hannestad,et al.  Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.

[16]  M. Viel,et al.  Non-linear evolution of the cosmic neutrino background , 2012, 1212.4855.

[17]  Hironao Miyatake,et al.  Fundamental Physics from Future Weak-Lensing Calibrated Sunyaev-Zel'dovich Galaxy Cluster Counts , 2017, 1708.07502.

[18]  Jonathan R. Pritchard,et al.  Eliminating the optical depth nuisance from the CMB with 21 cm cosmology , 2015, 1509.08463.

[19]  Kavli Ipmu,et al.  The impact of massive neutrinos on the abundance of massive clusters , 2011, 1108.4688.

[20]  M. Viel,et al.  Voids in massive neutrino cosmologies , 2015, 1506.03088.

[21]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[22]  S. Bird,et al.  An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.

[23]  C. Giunti,et al.  Fundamentals of Neutrino Physics and Astrophysics , 2007 .

[24]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[25]  J. Lesgourgues,et al.  Neutrino Mass from Cosmology , 2012, 1212.6154.

[26]  N. A. Titov,et al.  KATRIN Design Report 2004 , 2005 .

[27]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[28]  Simone Ferraro,et al.  KSZ tomography and the bispectrum , 2018, 1810.13423.

[29]  Julian B. Muñoz,et al.  Efficient computation of galaxy bias with neutrinos and other relics , 2018, Physical Review D.

[30]  M. Viel,et al.  Neutrinoless Double Beta Decay: 2015 Review , 2016, 1601.07512.

[31]  Yin Li,et al.  Scale-dependent bias and bispectrum in neutrino separate universe simulations , 2017, Physical Review D.

[32]  M. Lattanzi,et al.  Status of Neutrino Properties and Future Prospects—Cosmological and Astrophysical Constraints , 2017, Front. Phys..

[33]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[34]  Kendrick M. Smith,et al.  Characterizing the epoch of reionization with the small-scale CMB: Constraints on the optical depth and duration , 2018, Physical Review D.

[35]  A. Hopkins,et al.  Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.

[36]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[37]  J. Valle,et al.  Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity , 2017, Physics Letters B.

[38]  P. Ferreira,et al.  Reconstructing cosmic growth with kinetic Sunyaev-Zel’dovich observations in the era of stage IV experiments , 2016, 1604.01382.

[39]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[40]  David Alonso,et al.  Neutrino masses and beyond- ΛCDM cosmology with LSST and future CMB experiments , 2018, Physical Review D.

[41]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[42]  Arka Banerjee,et al.  Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.

[43]  Enzo Pascale,et al.  BFORE: a CMB balloon payload to measure reionization, neutrino mass, and cosmic inflation , 2018, Astronomical Telescopes + Instrumentation.

[44]  O. Cremonesi,et al.  Challenges in Double Beta Decay , 2013, 1310.4692.

[45]  G. Drexlin,et al.  Current Direct Neutrino Mass Experiments , 2013, 1307.0101.

[46]  Francisco Villaescusa-Navarro,et al.  Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.

[47]  R. Hatcher,et al.  The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies , 2018, 1807.10334.

[48]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[49]  Yong-Seon Song,et al.  Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.

[50]  Y. Wong Neutrino Mass in Cosmology: Status and Prospects , 2011, 1111.1436.

[51]  R. Bean,et al.  Constraints on massive neutrinos from the pairwise kinematic Sunyaev-Zel’dovich effect , 2014, 1412.0592.

[52]  José W. F. Valle,et al.  Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .

[53]  M. Loverde Halo bias in mixed dark matter cosmologies , 2014, 1405.4855.

[54]  C. Carbone,et al.  Massive neutrinos leave fingerprints on cosmic voids , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  F. Villaescusa-Navarro,et al.  First Detection of Scale-Dependent Linear Halo Bias in N-Body Simulations with Massive Neutrinos. , 2018, Physical review letters.

[56]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[57]  P. Ade,et al.  Measuring Reionization, Neutrino Mass, and Cosmic Inflation with BFORE , 2017, Journal of Low Temperature Physics.