Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model
暂无分享,去创建一个
David Alonso | Francisco Villaescusa-Navarro | George Fuller | Cora Dvorkin | Andreu Font-Ribera | Martina Gerbino | Massimiliano Lattanzi | Simeon Bird | Nicholas Battaglia | Ana Diaz Rivero | Marilena Loverde | A. Font-Ribera | A. Slosar | N. Battaglia | M. Lattanzi | S. Bird | M. Gerbino | F. Villaescusa-Navarro | G. Fuller | B. Sherwin | Julian B. Muñoz | D. Alonso | C. Dvorkin | M. Loverde | Anvze Slosar | Julian B. Munoz | Blake Sherwin | Simeon Bird
[1] M. Loverde. Spherical collapse in $\nu \Lambda$CDM , 2014, 1405.4858.
[2] M. Agostini,et al. Discovery probability of next-generation neutrinoless double- β decay experiments , 2017, 1705.02996.
[3] M. Viel,et al. Neutrino signatures on the high-transmission regions of the Lyman $\boldsymbol {\alpha }$ forest , 2011, 1106.2543.
[4] Yu Feng,et al. An efficient and accurate hybrid method for simulating non-linear neutrino structure , 2018, Monthly Notices of the Royal Astronomical Society.
[5] A. Slosar,et al. DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.
[6] Karsten M. Heeger,et al. Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8 , 2017, 1703.02037.
[7] David Alonso,et al. Cosmic voids: a novel probe to shed light on our Universe. , 2019, 1903.05161.
[8] Yong-Seon Song,et al. Determining Neutrino Mass from the CMB Alone , 2003, astro-ph/0303344.
[9] N. Battaglia. The tau of galaxy clusters , 2016, 1607.02442.
[10] Max Tegmark,et al. Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.
[11] M. Viel,et al. The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.
[12] M. Viel,et al. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.
[13] L. Verde,et al. BE-HaPPY: bias emulator for halo power spectrum including massive neutrinos , 2019, Journal of Cosmology and Astroparticle Physics.
[14] Edward J. Wollack,et al. The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.
[15] S. Hannestad,et al. Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.
[16] M. Viel,et al. Non-linear evolution of the cosmic neutrino background , 2012, 1212.4855.
[17] Hironao Miyatake,et al. Fundamental Physics from Future Weak-Lensing Calibrated Sunyaev-Zel'dovich Galaxy Cluster Counts , 2017, 1708.07502.
[18] Jonathan R. Pritchard,et al. Eliminating the optical depth nuisance from the CMB with 21 cm cosmology , 2015, 1509.08463.
[19] Kavli Ipmu,et al. The impact of massive neutrinos on the abundance of massive clusters , 2011, 1108.4688.
[20] M. Viel,et al. Voids in massive neutrino cosmologies , 2015, 1506.03088.
[21] Adrian T. Lee,et al. CMB-S4 Science Book, First Edition , 2016, 1610.02743.
[22] S. Bird,et al. An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.
[23] C. Giunti,et al. Fundamentals of Neutrino Physics and Astrophysics , 2007 .
[24] J. Lesgourgues,et al. Massive neutrinos and cosmology , 2005, astro-ph/0603494.
[25] J. Lesgourgues,et al. Neutrino Mass from Cosmology , 2012, 1212.6154.
[26] N. A. Titov,et al. KATRIN Design Report 2004 , 2005 .
[27] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[28] Simone Ferraro,et al. KSZ tomography and the bispectrum , 2018, 1810.13423.
[29] Julian B. Muñoz,et al. Efficient computation of galaxy bias with neutrinos and other relics , 2018, Physical Review D.
[30] M. Viel,et al. Neutrinoless Double Beta Decay: 2015 Review , 2016, 1601.07512.
[31] Yin Li,et al. Scale-dependent bias and bispectrum in neutrino separate universe simulations , 2017, Physical Review D.
[32] M. Lattanzi,et al. Status of Neutrino Properties and Future Prospects—Cosmological and Astrophysical Constraints , 2017, Front. Phys..
[33] Michele Limon,et al. CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.
[34] Kendrick M. Smith,et al. Characterizing the epoch of reionization with the small-scale CMB: Constraints on the optical depth and duration , 2018, Physical Review D.
[35] A. Hopkins,et al. Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.
[36] Alan D. Martin,et al. Review of Particle Physics , 2014 .
[37] J. Valle,et al. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity , 2017, Physics Letters B.
[38] P. Ferreira,et al. Reconstructing cosmic growth with kinetic Sunyaev-Zel’dovich observations in the era of stage IV experiments , 2016, 1604.01382.
[39] J. Lesgourgues,et al. Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.
[40] David Alonso,et al. Neutrino masses and beyond- ΛCDM cosmology with LSST and future CMB experiments , 2018, Physical Review D.
[41] S. Oguri,et al. Mission Design of LiteBIRD , 2013, 1311.2847.
[42] Arka Banerjee,et al. Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.
[43] Enzo Pascale,et al. BFORE: a CMB balloon payload to measure reionization, neutrino mass, and cosmic inflation , 2018, Astronomical Telescopes + Instrumentation.
[44] O. Cremonesi,et al. Challenges in Double Beta Decay , 2013, 1310.4692.
[45] G. Drexlin,et al. Current Direct Neutrino Mass Experiments , 2013, 1307.0101.
[46] Francisco Villaescusa-Navarro,et al. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.
[47] R. Hatcher,et al. The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies , 2018, 1807.10334.
[48] M. Viel,et al. Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.
[49] Yong-Seon Song,et al. Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.
[50] Y. Wong. Neutrino Mass in Cosmology: Status and Prospects , 2011, 1111.1436.
[51] R. Bean,et al. Constraints on massive neutrinos from the pairwise kinematic Sunyaev-Zel’dovich effect , 2014, 1412.0592.
[52] José W. F. Valle,et al. Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .
[53] M. Loverde. Halo bias in mixed dark matter cosmologies , 2014, 1405.4855.
[54] C. Carbone,et al. Massive neutrinos leave fingerprints on cosmic voids , 2018, Monthly Notices of the Royal Astronomical Society.
[55] F. Villaescusa-Navarro,et al. First Detection of Scale-Dependent Linear Halo Bias in N-Body Simulations with Massive Neutrinos. , 2018, Physical review letters.
[56] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[57] P. Ade,et al. Measuring Reionization, Neutrino Mass, and Cosmic Inflation with BFORE , 2017, Journal of Low Temperature Physics.